Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-19T03:15:00.253Z Has data issue: false hasContentIssue false

Polyalkylsilynes: Synthesis and Properties of “Two-Dimensional” Silicon-Silicon Bonded Network Polymers.

Published online by Cambridge University Press:  25 February 2011

Patricia A. Biancon
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974.
Timothy W. Weidman
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974.
Frederic C. Schilling
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974.
Get access

Abstract

The synthesis of the first soluble silicon-silicon bonded network polymers, the polyalkylsilynes [RSi]n was accomplished using high-intensity ultrasound to effect the reductive condensation of alkyltrichlorosilanes with liquid sodium-potassium alloy. The resulting polymers remain hydrocarbon-soluble and may be cast into transparent films. Spectroscopic data indicate a structure consisting of tetrahedral alkylsilicon units assembled via silicon-silicon bonds into amorphous networks. Films or solutions of the polysilynes exhibit an intense UV absorption which tails into the visible, blue-shifted but similar in shape and intensity to that of amorphous silicon. The photoreactivity and pyrolysis properties of these materials will be described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) West, R., J. Organomet. Chem. 300, 327 (1986). (b) J. M. Zeigler and L. A. Harrah, Macromolecules 20, 601 (1987). (c) R. D. Miller, B. L. Farmer, W. Fleming, R. Sooriyakumaran, and J. Rabolt, J. Am. Chem. Soc. 109, 2509 (1987). (d) K. A. Klingensmith, J. W. Downing, R. D. Miller, and J. Michl, J. Am. Chem. Soc. 108 7438 (1986). (e) P. Trefonas, R. West, and R. D. Miller, J. Am. Chem. Soc.107, 2737 (1985) (f) F. C. Schilling, F. A. Bovey, and J. M. Zeigler, Macromolecules 19, 2309 (1986).CrossRefGoogle Scholar
2. (a) West, R., David, L. D.,, Djurovich, P. I., Yu, H., and Sinclair, R., Am. Ceram. Soc. Bull. 62. 899 (1983). (b) S. Yajima, J. Hayashi, M. Omori, and K. Okimura, Nature 261, 683 (1976).Google Scholar
3. West, R., Wolff, A. R., and Peterson, D. J., J. Radiation Curing 13, 35 (1986).Google Scholar
4. (a) Zeigler, J. M., Harrah, L. A., and Johnson, A. W., SPIE Adv. Resist Technol. Proc. II 539, 166 (1985). (b) D. C. Hofer, R. D. Miller, C. G. Willson, and A. R. Neureuther, SPIE Adv. Resist Technol. Proc. 469, 16 (1984).Google Scholar
5. Kepler, R. G., Zeigler, J. M., Harrah, L. A., and Kurtz, S. R., Bull. Am. Phys. Soc. 28, 362 (1983).Google Scholar
6. (a) West, R. and Indricksons, A., J. Am Chem. Soc. 94 6110 (1972). (b) R. West, Ann. N. Y. Acad. Sci. 31, 262 (1973). (c) D. Seyferth and Y. F. Yu, in DesignL f New Materials, edited by D. L. Cocke and A. Clearfield (Plenum Publishing, New York, 1987), pp.79–94.CrossRefGoogle Scholar
7. Bianconi, P. A. and Weidman, T. W., J. Am. Chem. Soc. 110, 2342 (1988).CrossRefGoogle Scholar
8. Weidman, T. W., presented at the 192nd ACS National Meeting, Anaheim, CA, 1986 (unpublished).Google Scholar
9. Bianconi, P. A., Stillwagon, L. E., and Weidman, T. W., unpublished results.Google Scholar
10. Bianconi, P. A., Kwock, E. W., and Weidman, T. W., to be submitted for publication.Google Scholar
11. (a) Michalczyk, M. J. and West, R., Michl, J., J. Am. Chem. Soc. 106, 82111 (1984). (b) R. West, M. J. Fink, and J. Michl, Science 214, 1981, 1343. (c) H. B. Yokelson, J. Maxka, D. A. Siegel, and R. West, J. Am. Chem. Soc. 108, 4239 (1986).CrossRefGoogle Scholar
12. Bianconi, P. A., Schilling, F. C., and Weidman, T. W., unpublished results.Google Scholar