Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T21:41:39.934Z Has data issue: false hasContentIssue false

Point Defect Supersaturation During Zinc Diffusion into InP

Published online by Cambridge University Press:  26 February 2011

D. Wittorf
Affiliation:
Forschungszentrum Jülich, Institut für Festkörperforschung, D-52425 Jülich, Germany
W. Jäger
Affiliation:
Forschungszentrum Jülich, Institut für Festkörperforschung, D-52425 Jülich, Germany
A. Rucki
Affiliation:
Forschungszentrum Jülich, Institut für Festkörperforschung, D-52425 Jülich, Germany
K. Urban
Affiliation:
Forschungszentrum Jülich, Institut für Festkörperforschung, D-52425 Jülich, Germany
H.-G. Hettwer
Affiliation:
Universität Miinster, Institut für Metallforschung, D-48149 Münster, Germany
N. A. Stolwijk
Affiliation:
Universität Miinster, Institut für Metallforschung, D-48149 Münster, Germany
H. Mehrer
Affiliation:
Universität Miinster, Institut für Metallforschung, D-48149 Münster, Germany
Get access

Abstract

Formation of defects during Zn diffusion into undoped and Fe-doped InP single crystals at 700°C has been observed by transmission electron microscopy for various diffusion conditions. The observations are correlated with Zn concentration profiles obtained by electron microprobe measurements and secondary-ion mass spectrometry. The results allow the conclusion that indiffusing interstitial Zn can occupy In sublattice sites via a kick-out reaction. Under appropriate diffusion conditions supersaturations of In self-interstitial atoms result leading to defect formation. Observations in Fe-doped InP suggest that Zn also replaces Fe on In sublattice sites leading to redistribution and to precipitation of Fe.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tuck, B. and Hooper, A. J., Phys. D: Appl. Phys. 8, 1806 (1975).Google Scholar
2. Serreze, H. B. and Marek, H. S., Appl. Phys. Lett. 49, 210 (1986).Google Scholar
3. van Gurp, G.J., van Dongen, T., Fontijn, G.M., Jakobs, J.M. and Tjaden, D.L.A., J. Appl. Phys. 65, 553 (1989).Google Scholar
4. Tuck, B., Atomic Diffusion in III-V Semiconductors (Adam Hilger, Bristol, 1988).Google Scholar
5. Dixon, R. H., Jäger, W., Rucki, A., Urban, K., Hettwer, H.- G., Stolwijk, N. A. and Mehrer, H. Inst. Phys. Conf. Ser. 134, 539 (1993)Google Scholar
6. Wittorf, D., Rucki, A., Jäger, W., Dixon, R. H., Urban, K., Hettwer, H.-G., Stolwijk, N. A. and Mehrer, H., J. Appl. Phys. 74, 2843 (1995).Google Scholar
7. Hettwer, H.-G., Lerch, W., Lentfort, B., Stolwijk, N. A. and Mehrer, H., Appl. Surf. Sci. 50, 470 (1991).Google Scholar
8. Föil, H. and Wilkens, M., phys. stat. sol. (a) 31, 519 (1975).Google Scholar
9. Luysberg, M., Jäger, W., Urban, K., Schänzer, M., Stolwijk, N. and Mehrer, H., Mat. Res. Soc. Symp. Vol. 163, 659 (1989) and Mater. Sci. Eng. B13, 137 (1992).Google Scholar
10. Tan, T.Y., Gösele, U. and Yu, S., Crit. Rev. Sol. St. Mater. Sci. 17, 47 (1991).Google Scholar
11. Jäger, W., Rucki, A., Urban, K., Hettwer, H.-G., Stolwijk, N., Mehrer, H. and Tan, T.Y., J. Appl. Phys. 74, 4409 (1993).Google Scholar
12. Petroff, P.M. and Kimerling, L.C., Appl. Phys. Lett. 29, 461 (1976).Google Scholar
13. Marioton, B. P. R., Tan, T. Y. and Gösele, U., Appl. Phys. Lett. 54, 849 (1989).Google Scholar