Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-11T09:14:07.140Z Has data issue: false hasContentIssue false

Point Defect Changes in CuGaSe2 Induced by Gas Annealing

Published online by Cambridge University Press:  01 February 2011

Akimasa Yamada
Affiliation:
National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
Akihiko Nishio
Affiliation:
National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
Paul. Fons
Affiliation:
National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
Hajime Shibata
Affiliation:
National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
Koji Matsubara
Affiliation:
National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
Shigeru Niki
Affiliation:
National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
Hisayuki Nakanishi
Affiliation:
National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
Get access

Abstract

Epitaxial CuGaSe2 films were grown on GaAs substrates under Cu-excess conditions to obtain stoichiometric compositions. The films were annealed in Ar, Sex or O2 ambients with or without a Cu or Cu-Se cap layer with the intention of changing the intrinsic defect concentrations. Samples were evaluated using low-temperature photoluminescence (PL) measurements. Annealing of the samples dramatically changed the PL spectra indicating that not only interdiffusion had occurred, but defect species and populations were changed. Comprehensive consideration of the changes led to the conclusion that the emissions at 1.62 eV, 1.66 eV and in the range from 1.2 to 1.4 eV are related to specific defects of Se vacancies, Cu vacancy-Se vacancy complexes and interstitial Cu, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schock, H.W., Dimmler, B., Dittrich, H., Kimmerle, J., Menner, R., (Proc. 7th E.C. Photovolt. Solar Energy Conf. 1987) pp. 465469.Google Scholar
2. Wagner, S. and Bridenbaugh, P. M., J. Cryst. Growth 39, 151 (1977).Google Scholar
3. Nadenau, V., Hariskos, D. and Schock, H. W., (14th Euro. Photovolt. Solar Energy Conf., Barcelona, Spain, 1997) pp. 12501253.Google Scholar
4. Susaki, M.. Miyauchi, T., Horinaka, H., and Yamamoto, N., Jpn. J. Appl. Phys. 17, 1555 (1978).Google Scholar
5. Masse, G. and Redjai, E.. J. Phys. Chem. Solids 47, 99 (1986).Google Scholar
6. Masse, G., Lahlou, N., and Yamamoto, N., J. Appl. Phys. 51, 4981 (1980).Google Scholar
7. Pamplin, B. R., Kiyosawa, T., and Masumoto, K., Progr. Crystal Growth Charact. 1, 331 (1979).Google Scholar
8. Cahen, D., (Proc. 7th Int. Conf. Ternary and Multinary Compounds, Denver, CO, 1987) p. 433.Google Scholar
9. Neumann, H., Crystal Res. Technol. 18, 483 (1983).Google Scholar
10. Yamada, A., Fons, P., Niki, S., Shibata, H., Obara, A., Makita, Y. and Oyanagi, H., J. Appl. Phys. 81, 2794 (1997).Google Scholar
11. Wei, S-H., Zhang, S.B. and Zunger, A., Appl. Phys. Lett. 72, 3199 (1998).Google Scholar
12. Bauknecht, A., Siebentritt, S., Albert, J. and Lux-Steiner, M. Ch., J. Appl. Phys. 89 4391 (2001).Google Scholar
13. Mikkelsen, J.C. Jr J. Electron. Mater. 10, 541 (1981).Google Scholar
14. Yamada, A., Fons, P. J., Niki, S. and Oyanagi, H., Jpn. J. Appl. Phys. 38, L96 (1999).Google Scholar
15. Klenk, R., Schock, H. W., Cahen, D., Engelhart, T. and Moons, E., (10th Euro. Photovolt. Solar Energy Conf., Lisbon, Portugal, 1991) pp. 927930.Google Scholar
16. Yamada, A., Makita, Y., Niki, S., Obara, A., Fons, P., Shibata, H., Kawai, M., Chichibu, S. and Nakanishi, H., J. Appl. Phys. 79, 4318 (1996).Google Scholar
17. Dzhafarov, T. D., Sadigov, M. S., Bacaksiz, E., Oren, D. and Karabay, I, Solar Energy and Solar Cells 52, 135 (1998).Google Scholar
18. Suzuki, R., Ohdaira, T., Ishibashi, S., Uedono, A., Niki, S., Fons, P. J., Yamada, A., Mikado, T., Yamazaki, T., Tanigawa, S., (Proc. 11th Int. Conf. Ternary and Multinary Compounds, Salford, 1998) pp. 750757.Google Scholar
19. Kane, E. O., Phys. Rev. 31, 79 (1963).Google Scholar
20. Debregoand, V.P. Shlimak, I. S., Phys. Status Solidi 33, 805 (1969).Google Scholar
21. Redfield, D., Wittke, J. P. and Pankov, J. I., Phys. Rev. B 22, 1830 (1970).Google Scholar
22. Alferov, Zh. I., Andreev, V. M., Garbuzov, D. Z. and Trukan, M. K., Sov. Phys. Semicond., 6, 1718 (1973).Google Scholar
23. Yu, P. W., J. Appl. Phys. 48, 5043 (1977).Google Scholar
24. Krustok, J., Schon, J. H., Collan, H., Yakushev, M, Madasson, J. and Bucher, E., J. Appl. Phys. 86, 364 (1999).Google Scholar
25. Ka, O. and Yamada, A., Thin Solid Films 361-362, 509 (2000).Google Scholar
26. Neumann, H., Cryst. Res. Technol. 8, K8 (1983).Google Scholar