Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-11T23:00:48.657Z Has data issue: false hasContentIssue false

Platinum Nanostructure Growth Using Self-Assembled Fluorocarbon Structure

Published online by Cambridge University Press:  01 February 2011

Sang Hwui Lee
Affiliation:
lees@rpi.edu, Rensselaer Polytechnic Institute, Center for Integrated Electronics, 110 8th St., RPI, CII 6231, Troy, NY, 12180, United States, 1-518-276-8003, 1-518-276-8761
Zhengchun Liu
Affiliation:
liuz2@rpi.edu, Rensselaer Polytechnic Institute, Center for Integrated Electronics, Troy, NY, 12180, United States
J. Jay McMahon
Affiliation:
mcmahj@rpi.edu, Rensselaer Polytechnic Institute, Center for Integrated Electronics, Troy, NY, 12180, United States
Jian-Qiang Lu
Affiliation:
luj@rpi.edu, Rensselaer Polytechnic Institute, Center for Integrated Electronics, Troy, NY, 12180, United States
Get access

Abstract

We report on a novel approach to grow platinum (Pt) nanostructure using a self-assembled fluorocarbon structure as a template. A ring-type structure of fluorocarbon residues forms during the reactive ion etching (RIE) of SiO2 using trifluoromethane (CHF3) and oxygen as etching gases. Typical dimensions of the ring-type fluorocarbon structure are found to be ∼50 nm in diameter, ∼10 nm in wall thickness, and ∼50 nm in height in this study. Platinum nanostructure up to 100 nm in height and 50 nm in diameter are grown on the template using a low-cost thin film sputter coater for 3 minutes. The morphology and growth mechanism of fluorocarbon structure and platinum nanostructure are discussed. This work provides a simple approach to platinum nanostructure growth for a fuel-cell application.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pichonat, T. and Gauthier-Mauel, B., Microsystem Technology 12 pp. 330334 (2006).Google Scholar
2. Modroukas, D., Modi, V. and Frechette, L.G., J. Micromech. Microeng. 15 pp. S193201 (2005).Google Scholar
3. Xiao, Z., Yan, G., Feng, C., Chan, P. C.H., and Tsing, I.-M., J. Micromech. Microeng. 16 pp. 20142020 (2006).Google Scholar
4. Mallari, J.C., Snyder, S.M., Chung, V., and Petrovic, S., US Patent 7,118,822 B2 (2006).Google Scholar
5. Waje, M.M., Wang, X., Li, W. and Yan, Y., Nanotechnology, 16 pp. S395–S400 (2005).Google Scholar
6. Foll, Helmut, Carstensen, J., and Frey, S., J. Nanomaterials, v. 2006 ID 91635 pp. 110 (2006).Google Scholar
7. Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G., Ross, P.N., Lucas, C.A., and Markovic, N.M., Science v. 315 pp. 493497 (2007).Google Scholar
8. Vitkavage, D. J. and Mayer, T.M., J. Vac. Sci. Technol. B 4(6) pp. 12831291 (1986).Google Scholar
9. Rueger, N.R., Beulens, J.J., Schaepkens, M., Doemling, M.F., Mirza, J.M., Standaert, T. E. F.M., and Oehrlein, G. S., J. Vac. Sci. Technol. A 15(4), pp. 18811889 (1997).Google Scholar
10. Butterbaugh, J.W., Gray, D.C. and Sawin, H.H., J. Vac. Sci. Technol. B 9(3), pp.14611470 (1991).Google Scholar
11. Cicala, G., Milella, A., Palumbo, F., Favia, P., and D'Agostino, R., Diamond and Related Materials 12 pp. 20202025 (2003).Google Scholar
12. Karabacak, T., Wang, G.-C., and Lu, T –H., J. Vac. Sci. Technol. A22(4), pp. 17781784 (2004).Google Scholar
13. III, J. H. Thomas, J. Vac. Sci. Technol. A 21(3) pp. 572576 (2003).Google Scholar
14. Andreazza, P., Surface and Coatings Technology v151 n52, p122 (2002).Google Scholar
15. Westwood, W.D., J. Vac Sci Technol. 11 pp. 466471 (1974).Google Scholar
16. Ferreira, P.J. et al. , J. Electrochemical Society, 152 (11) A2256–A2271 (2005).Google Scholar