Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-28T22:13:35.089Z Has data issue: false hasContentIssue false

Plasma-Activated CVD for the Production of Protective Layers in Optics, Electronics and Mechanical Engineering

Published online by Cambridge University Press:  25 February 2011

Knut Enke
Affiliation:
Leybold-Heraeus GmbH, P.O.B. 1555, D-6450 Hanau I, F.R. Germany
Michael Geisler
Affiliation:
Leybold-Heraeus GmbH, P.O.B. 1555, D-6450 Hanau I, F.R. Germany
Jörg Kieser
Affiliation:
Leybold-Heraeus GmbH, P.O.B. 1555, D-6450 Hanau I, F.R. Germany
Wolf-Dieter Münz
Affiliation:
Leybold-Heraeus GmbH, P.O.B. 1555, D-6450 Hanau I, F.R. Germany
Get access

Abstract

Conventional chemical vapor deposition (CVD) has historically utilized high melting temperature substrates. Recently there has been an increased desire to coat temperaturesensitive materials such as aluminum, glass, steel, and even plastic. Thus “cold” CVDprocesses, most using plasma excitation, have been developed. In these processes gas molecules or atoms are excited by dc or ac glow discharge, thereby allowing the possibility of keeping substrates at room temperature.

This paper describes plasma CVD reactors using capacitive coupling of r.f. voltage to an asymmetrical arrangement of electrodes. Using organic or metal-organic process gases and mixtures of them with inorganic gases, deposition takes place on the reactor walls, the anode, and the cathode. In this paper the emphasis is on deposition on negatively selfbiased substrate holders. Physical and chemical properties of plasma-CVD grown layers depend on about six process parameters, the most important of which are cathode voltage, gas pressure, choice of gases, and mixing ratio of gases. Map-like representations show the dependence of coating properties on deposition parameters. Layer materials discussed include amorphous hydrogenated carbon (a-C:H). WCx, SiOx:H, SiCxOy:H. and SnOx:H.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hintermann, H. E., Thin Solid Films 84, 215 (1981).Google Scholar
2. Motojima, S., Yamada, M., and Sugiyama, K., J. Nucl. Mat. 105, 335 (1982).Google Scholar
3. Randich, E., Thin Solid Films 72, 517 (1980).Google Scholar
4. Rand, M. J., J. Vac. Sci. Technol. 16, 420 (1979).Google Scholar
5. Sherman, A., Thin Solid Films 113, 135 (1984).Google Scholar
6. Vepřek, S., Thin Solid Films 130, 135 (1985).Google Scholar
7. Weissmantel, C., Bewilogua, K., Dietrich, D., Erler, H.-J., Hinneberg, H.-J., Klose, S., Nowick, W., and Reisse, G., Thin Solid Films 72, 19 (1980).Google Scholar
8. Gallus, G., German Patent Application No. DE 22 41 229 C2 (1983).Google Scholar
9. Munz, W. D., Hofmann, D., and Hartig, K., Thin Solid Films 96, 79 (1982).Google Scholar
10. For a very thorough literature research on a-C:H see Woollam, J. A., Chang, H., and Natarajan, V., Appl. Phys. Commun. 5, 263 (19851986).Google Scholar
11. Münz, W. D., Proc. Int. Symp. on Trends and New Appl. in Thin Films, Strasbourg (1987) p. 717.Google Scholar
12. Enke, K., Appl. Optics 24, 508 (1985).Google Scholar
13. Zelez, J., J. Vac. Sci. Technol. A12, 305 (1983).Google Scholar
14. Jenkins, M. W., Mocella, M. T.. Allen, K. D., and Sawin, H. H., Solid State Technology April, 175 (1986).Google Scholar
15. Rechenberg, I., Naturw. Rdsch. 26, 465 (1973).Google Scholar
16. Enke, K., Proc. 28th Ann. Tech. Conf. Soc. Vac. Coaters (1985) p. 78.Google Scholar
17. Enke, K., Lorenz, G., and Stoll, H., submitted to IPAT 87, May 27–29, 1987. Brighton.Google Scholar
18. Ven, E. P. G. T. van de, Solid State Technol. April, 167 (1981).Google Scholar
19. Adams, A. C., Solid State Technology April, 135 (1983).Google Scholar
20. Schmolla, W. and Hartnagel, H. L., I. Phys. D: Appl. Phys. 15, L95 (1982).Google Scholar
21. Enke, K., Thin Solid Films 80, 227 (1981).Google Scholar
22. Assink, R. A., Hays, A. K., Bild, R. W., and Hawkins, B. L., J. Vac. Sci. Technol. A3, 2629 (1985).Google Scholar
23. Schön, D. and Dimigen, H., Proc. Int. Symp. on Trends and New Appl. in Thin Films, Strasbourg (1987) p. 657.Google Scholar
24. Shizhi, L., Wu, H., Hongshun, Y., and Zhongshu, W., in Plasma Chemistry and Plasma Processing Vol.4. 147 (1984).Google Scholar
25. Archer, N. J., Thin Solid Films 80, 221 (1981).Google Scholar