Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-21T23:57:16.707Z Has data issue: false hasContentIssue false

Plasma Process Routes to Synthesis of Carbide, Boride and Nitride Ceramic Powders

Published online by Cambridge University Press:  25 February 2011

Aaron J. Becker
Affiliation:
Ceramics Division, Alcoa Laboratories, Alcoa Center, PA 15069
Thomas N. Meyer
Affiliation:
Ceramics Division, Alcoa Laboratories, Alcoa Center, PA 15069
Frances N. Smith
Affiliation:
Ceramics Division, Alcoa Laboratories, Alcoa Center, PA 15069
Jon F. Edd
Affiliation:
Ceramics Division, Alcoa Laboratories, Alcoa Center, PA 15069
Get access

Abstract

An iterative technique to develop plasma processing, consisting of identifying materials with unique properties, calculating conversion efficiencies, product purity and power from thermodynamic data for the chemical reactions selected to produce it and modeling the process mathematically and physically to determine capital and labor costs is illustrated with production of silicon carbide and titanium diboride in Alcoa's DC plasma facility. The work shows that submicron silicon carbide and titanium diboride containing less than 0.2% oxygen can be produced with plasmas at costs competitive with traditional processes. It has also been reported that aluminum nitride, a material which has the high thermal conductivity needed for high power electronic substrates, can be satisfactorily produced by reacting aluminum powder with nitrogen in an RF plasma system. Future application of plasmas for production of ceramics will depend on discovery of unique properties and cost effective process optimization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brook, R. J., Mater. Sci. Eng. 71, 30 (1985).Google Scholar
2. Vogt, G. J. and Newkirk, L. R., Proc. Electrochem. Soc. 86–2 164 (1986).Google Scholar
3. Estey, P. N., EPRI Report No. EM-4336, 1985.Google Scholar
4. Young, R. M. and Pfender, E., Plasma Chem. Plasma Process. 5 (1), 1 (1985).Google Scholar
5. Canteloup, J. and Mocellin, A., in Special Ceramics Vol.6, edited by Popper, P. (British Ceramic Research Society, Stoke-on-Trent, U.K., 1975), 209.Google Scholar
6. Mitrofanov, B., Mazza, A., Pfender, E., Ronsheim, P. and Toth, L. E., Mat. Sci. and Eng. 48, 21 (1981).Google Scholar
7. Vogt, G. J., Hollabaugh, C. P., Hull, D. B., Newkirk, L. R. and Petrovic, J. J., Mat. Res. Soc. Symp. Proc. 30 (Elsevier Sci. Publ., New York, 1984), 283.Google Scholar
8. Zyatkevich, D. P., Kosolapova, T. Ya., Makarenko, G. N., Oleinik, G. S., Pilyankevich, A. N. and Pokrovskii, D. D., Poroshkovaya Metallurgiya, 187 (7), 70 (1978).Google Scholar
9. Aivazov, M. I., Volod'ko, V. V., Evseev, B. A. and Nikulin, Yu. N., Poroshk. Metall. (Kiev) 217 (1), 1 (1981).Google Scholar
10. Yoshida, T., Kawasaki, A., Nakagawa, K. and Akashi, K., J. Mat. Sci. 14, 1624 (1979).Google Scholar
11. Stroke, F. G., U. S. Patent No. 4,133,689 (1979 January 09).Google Scholar
12. Chase, J. D., U. S. Patent No. 3,839,542 (1974 October 01).Google Scholar
13. Ronsheim, P., Toth, L. E. and Pfender, E., J. Mat. Sci. Letters 1, 343 (1982).Google Scholar
14. Toitskii, V. N., Grebtsov, B. M. and Aivazov, M. I., Porosh. Met. 11, 6 (1973).Google Scholar
15. Research Group of Boron Nitride in Arc Plasma; Dept. of Mech. Eng., Ch'ing Hua Ta Hseuh Hsueh Pao 4, 15 (1978).Google Scholar
16. Kong, P. C., Suzuki, M., Young, R. and Pfender, E., Plasma Chemistry and Plasma Processing 3 (1), 115 (1983).Google Scholar
17. Ronsheim, P. A., Ph.D. Thesis, University of Minnesota, 1981.Google Scholar
18. See Reference 9.Google Scholar
19. Montedison S.p.A. Japanese Patent 52/128900 (1977 October 28).Google Scholar
20. Troitskii, V. N. and Grebtsov, B. M., Khim., Fiz. Obrab. Mater. 4, 55 (1978).Google Scholar
21. Troitskii, V. N., Grebtsov, B. M. and Gurov, S. V., Tezisy Dokl.-Vses. Simp. Plazmokhim. 2nd Vol.2, 230 (1975).Google Scholar
22. Troitskii, V. N., Grebtsov, B. M. and Aivazov, M. I., Vopr. Khim. Tekhnol. 35, 29 (1974).Google Scholar
23. See Reference 14.Google Scholar
24. Grabis, J., Sveke, I., Cabule, G. and Millers, T., Latv. PSR Zinat. Akad. Vestis, Kim. Ser., 6, 651 (1982).Google Scholar
25. McPherson, R. and Bailey, G. J., J. Mater. Sci. 16 (2), 504 (1981).Google Scholar
26. Myagkov, K. A. and Blinkov, I. V., Izv. Vyssh. Uchebn. Zaved., Chern. Metall. 5, 90 (1984).Google Scholar
27. See Reference 3.Google Scholar
28. Rothman, E. P., Ph.D. Thesis, MIT, 1985.Google Scholar
29. Frankhouser, W. L., Semiannual Technical Report-System Planning Corporation, Arlington, Virginia (1985 December).Google Scholar
30. Kingon, A. I., Lutz, L. J., Liaw, P. and Davis, R. F., J. Amer. Ceram. Soc. 66, 558 (1983).Google Scholar
31. Erikson, G., Chemica Scripta., 8, 100 (1975).Google Scholar
32. JANAF Thermochemical Tables, 2nd Ed. Nat. Stand. Ref. Data Ser., NBS, Washington, DC, 1971 June.Google Scholar
33. Barin, I. and Knacke, O., Thermochemical Properties of Inorganic Substances, Springer Verlag, Berlin, 1973 and Supplement, 1977.Google Scholar
34. Tajima, Y. and Kingery, W. D., Commun. of Amer. Ceram. Soc. 62, C27 (1982).Google Scholar
35. See Reference 15.Google Scholar
36. Zyatkevich, D. P., Pokrovskii, D. O., Makarenko, G. N. and Kosolapova, T.Ya., Izv. Akad. Nauk SSSR, Neorg. Mater., 15, 599 (1979).Google Scholar
37. Carson, D. R. and Holden, C. B., U. S. Patent 4,022,872 (1977).Google Scholar
38. Carson, D. R. and Holden, C. B., U. S. Patent 4,022,872 (1977).Google Scholar
39. See Reference 4.Google Scholar
40. Creare Inc., Hanover, New Hampshire (1984).Google Scholar
41. Finch, C. B., Becher, P. F., Angelini, P., Baik, S., Bamberger, C. F. and Brynestad, J., Adv. Cer. Mater. 1 [1], 50 (1986).Google Scholar
42. Baumgartner, H. R. and Steiger, R. A., J. Amer. Cer. Soc. 67, 207 (1984).Google Scholar
43. Payne, J. R. and Dorward, R. C., D.O.E. Annual Report Contract EC-76-C-03-1257, 1979 May.Google Scholar
44. Slack, G. A., J. Phys. Chem. Solids 34, 321 (1973).Google Scholar
45. Billy, M. and Mexmain, J., World Ceramics 2, 91 (1985).Google Scholar
46. The Nihon Keizai Shimbun JEJ, 1986 November 29.Google Scholar