Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-20T23:32:51.496Z Has data issue: false hasContentIssue false

Plasma Deposition of Tungsten

Published online by Cambridge University Press:  28 February 2011

K. E. Greenberg*
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185.
Get access

Abstract

Tungsten films were plasma-deposited using an abnormal glow discharge through a mixture of tungsten hexafluoride, hydrogen, and argon. The films adhered well to silicon, silicon dioxide, gallium arsenide, and aluminum substrates placed directly on the discharge cathode. Typical deposition rates were on the order of 160 Angstroms/minute with as-deposited film resistivities of 40 to 70 microohm-cm. The tungsten was analysed using a number of techniques including X-ray diffraction, scanning electron microscopy, and Auger spectroscopy, Low-resistivity (<10 microohm-cm) films that adhered well to silicon-dioxide were obtained with a two-step process utilizing plasma deposition and conventional chemical vapor deposition.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pauleau, Y. and Lami, Ph., J. Electrochem. Soc. 132 (11),2780 (1985).CrossRefGoogle Scholar
2. Broadbent, E. K. and Stacy, W. T., Solid State Tech. 28 (12), 51 (1985).Google Scholar
3. Broadbent, E. K. and Ramiller, C. L., J. Electrochem. Soc. 131 (6), 1427 (1984).CrossRefGoogle Scholar
4. von Engel, A., Ionized Gases, 2nd. ed. (Oxford University Press, New York, 1965), Chapter 8.CrossRefGoogle Scholar
5. Davis, W. D. and Vanderslice, T. A., Phys. Rev. 131, 219 (1963).CrossRefGoogle Scholar
6. Dallaporta, H. and Cros, A., Appl. Phys. Lett. 48 (20), 1357 (1986).CrossRefGoogle Scholar
7. Mitchell, I. V., Nyberg, G. and Elliman, R. G., Appl. Phys. Lett. 45 (2), 137 (1984).CrossRefGoogle Scholar
8. Griffith, J. E., Qiu, Y. and Trombello, T. A., Nucl. Instrum. Methods 198, 607 (1982).CrossRefGoogle Scholar
9. Learn, A. J. and Foster, D. W., J. Appl. Phys. 58 (5), 2001 (1985).CrossRefGoogle Scholar
10. Tang, C. C. and Hess, D. W., Appl. Phys. Lett. 45 (6), 633 (1984).CrossRefGoogle Scholar
11. Basavaiah, S. and Pollack, S. R., J. Appl. Phys. 39 (12), 5548 (1968).CrossRefGoogle Scholar