Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-22T15:29:36.922Z Has data issue: false hasContentIssue false

Plasma Coating and Enhanced Dispersion of Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

Peng He
Affiliation:
Dept. of Chemical and Materials Engineering, University of Cincinnati Cincinnati, OH 45221
Jie Lian
Affiliation:
Dept. of Nuclear Engineering and Radiological Science, University of Michigan Ann Arbor, MI 48109
Donglu Shi
Affiliation:
Dept. of Chemical and Materials Engineering, University of Cincinnati Cincinnati, OH 45221
Lumin Wang
Affiliation:
Dept. of Nuclear Engineering and Radiological Science, University of Michigan Ann Arbor, MI 48109
Wim van Ooij
Affiliation:
Dept. of Chemical and Materials Engineering, University of Cincinnati Cincinnati, OH 45221
David Mast
Affiliation:
Dept. of Nuclear Engineering and Radiological Science, University of Michigan Ann Arbor, MI 48109
W. Z. Li
Affiliation:
Dept. of Physics, University of Cincinnati Cincinnati, OH 45221
Z. F. Ren
Affiliation:
Dept. of Physics, University of Cincinnati Cincinnati, OH 45221
Get access

Abstract

Ultrathin polymer films have been deposited on both multi-wall and aligned carbon nanotubes using a plasma polymerization treatment. TEM experimental results showed that a thin film of polystyrene layer (several nanometers) was uniformly deposited on the surfaces of the nanotubes including inner wall surfaces of the multi-wall nanotubes. The coated multi-wall nanotubes were mixed in polymer solutions for studying the effects of plasma coating on dispersion. It was found that the dispersion of multi-wall carbon nanotubes in polystyrene composite was significantly improved. The deposition mechanisms and the effects of plasma treatment parameters are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Siegel, R. W., Nanostructured Materials. 3, 1 (1993).Google Scholar
2. Hadjipanayis, G. C. and Siegel, R.W., Nanophase materials, Synthesis-properties-applications (Kluwer Press, Dordrecht, 1994).Google Scholar
3. Whitesides, G. M., Mathias, J. P., and Seto, C. T., Science, 254, 1312 (1991).Google Scholar
4. Stucky, C. D., and MacDougall, J. E., Science, 247, 669 (1990).Google Scholar
5. Gleiter, H., Nanostructured Materials, 6, 3 (1995).Google Scholar
6. Shi, D., He, P., vanooij, W. J., Journal of Material Research, 17, 2555 (2002)Google Scholar
7. Shi, D., He, P., Wang, S.X., van Ooij, W. J., Wang, L.M., Zhao, J., and Yu, Z., Journal of Material Research, 17, 981 (2002)Google Scholar
8. Shi, D., Wang, S.X., van Ooij, W.J., Wang, L.M., Zhao, J., and Yu, Z., Appl. Phys. Lett., 78, 1234 (2001)Google Scholar
9. Shi, D., Jie, L., He, P., Wang, L. M., van Ooij, W. J., Schulz, M., Liu, Y. J., Mast, D. B., Appl. Phys. Lett., 81, 5216 (2003)Google Scholar
10. Shi, D., Jie, L., He, P., Wang, L. M., Van Ooij, W. J., Schulz, M., Liu, Y. J., Mast, D. B., Appl. Phys. Lett., (in press)Google Scholar
11. Applied Sciences, Inc., 141 W. Xena Ave., P.O. Box 579, Cedarville, OH 45314–0579Google Scholar
12. Tu, Y., Huang, Z. P., Wang, D. Z., Wen, J. G., Ren, Z. F., Appl. Phys. Lett. 80, 4018 (2002)Google Scholar
13. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., and Provencio, P. N., Science 282, 1105 (1998)Google Scholar
14. Huang, Z. P., Xu, J.W., Ren, Z. F., Wang, J. H., Siegal, M. P., and Provencio, P. N., Appl. Phys. Lett 73, 3845 (1998)Google Scholar
15. Chen, J. H., Huang, Z. P., Wang, D. Z., Yang, S. X., Wen, J. G., and Ren, Z. F.,, Appl. Phys. A. 73, 129 (2001)Google Scholar
16. van Ooij, W.J., Luo, S., Zhang, N., and Chityala, A., in Proceedings International Conference on Advanced Mfg. Technology (Science Press, New York, 1999), p. 1572 Google Scholar
17. van Ooij, W.J. and Chityala, A., Surface Modification of Powders by Plasma Polymerization, edited by Mittal, K.L. (VSP, Utrecht, 2000), p. 243 Google Scholar
18. van Ooij, W.J., Zhang, N., and Guo, S., in Fundamental and Applied Aspects of Chemically Modified Surfaces, edited by Blitz, J.P. and Little, C.B. (Royal Society of Chemistry, Cambridge U.K., 1999), p. 191 Google Scholar