Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-22T22:31:56.409Z Has data issue: false hasContentIssue false

Picosecond Ultrasonics Studies of the Effect of Ion Implantation on InterfAcial Bonding Between a thin Film and a Substrate

Published online by Cambridge University Press:  10 February 2011

G. Tas
Affiliation:
Department of Physics, Brown University, Providence, RI 02912
J. J. Loomis
Affiliation:
Department of Physics, Brown University, Providence, RI 02912
H. J. Maris
Affiliation:
Department of Physics, Brown University, Providence, RI 02912
A. A. Bailes III
Affiliation:
Department of Physics, University of Florida, Gainesville, FL 32611
L. E. Seiberling
Affiliation:
Department of Physics, University of Florida, Gainesville, FL 32611
Get access

Abstract

We have used picosecond ultrasonics to study the effects of ion irradiation on the interfacial bonding between gold films and a silicon substrate. Acoustic vibrations are excited in the metal film when a picosecond light pulse is absorbed. The rate at which these vibrations damp out via sound transmission across the interface into the substrate gives a measure of the adhesion of the film to the substrate. The films were irradiated with 2.5 MeV helium ions with doses between 7×1014 and 8×1016 ions cm-2. The adhesion, as measured by the rate of acoustic damping, was found to be significantly improved by the ion irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Perfetti, P., Nannarone, S., Patella, F., Quaresima, C., Capozi, M. and Savoia, A., Phys. Rev. B. 26, 1125 (1982).Google Scholar
2.Dallaporta, H. and Cros, H., Appl. Phys. Lett. 48, 1357 (1986).Google Scholar
3.Bardin, T. T., Pronko, J. G., Senbetu, L. and Kozak, D. A., Mat. Res. Soc. Symp. Proc. Vol.119, 147 (1988); T. T. Bardin, J. G. Pronko, D. K. Kinnel, ibid. Vol. 77, 731 (1987).Google Scholar
4.Kellock, A. J., Baglin, J. E. E., Bardin, T. T., and Pronko, J. G., Nucl. Instr. Meth. B59/60, 249 (1991).Google Scholar
5.Jacobsson, R., Thin Solid Films 34, 191 (1976); K. Mittal, Electrocomp. Sci. Technol. 3, 21 (1976); B. N. Chapman, J. Vac. Sci. Technol. 11, 106 (1974); J. Valli, ibid. A4, 3007 (1986).Google Scholar
6.Griffith, J. E., Qiu, Y. and Tombrello, T. A., Nucl. Instr. Meth. 198, 607 (1982).Google Scholar
7.Mitchell, I. V., Williams, J. S., Sood, D. K., Short, K. T., Johnson, S. and Elliman, R. G., Mat. Res. Soc. Syrup. Proc. Vol. 25, 189 (1984); I. V. Mitchell, J. S. Williams, Appl. Phys. Lett. 44, 193 (1984).Google Scholar
8.Ingemarsson, P. A., Tombrello, T. A., Mat. Res. Soc. Symp. Proc. Vol.119, 103 (1988); T. A. Tombrello, ibid. Vol. 119, 95 (1988).Google Scholar
9.Seiberling, L. E., Headrick, R. L., in Surface and Colloid Science in Computer Technolog, edited by Mittal, K. L. (Plenum, New York, 1987), pp. 235247.Google Scholar
10.Baglin, J. E., IBM J. Res. Develop. 38, 413 (1994).Google Scholar
11.Thomsen, C., Grahn, H. T., Manis, H. J. and Tauc, J., Phys. Rev. B. 34, 4129 (1986); H. T. Grahn, H. J. Maris and J. Tauc, IEEE J Quantum Electron. Vol. 25, 2562 (1989); G.Tas, R.J. Stoner, H.J. Manis, G.W. Rubloff, G.S. Oehrlein, and J.M. Halbout, Appl. Phys. Lett. 61, 1787 (1992).Google Scholar
12.Stoner, R. J. and Maris, H. J., Phys. Rev. B. 48, 16373 (1993).Google Scholar
13. See, or example, Beyer, R. T., Letcher, S. V.Physical Ultrasonics, (Academic Press, New York, 1969).Google Scholar
14.Hull, T. R., Colligon, J. S. and Hill, A. E., Vacuum, 37, 327 (1987).Google Scholar