Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-22T22:01:46.006Z Has data issue: false hasContentIssue false

Physical and Chemical Sputtering at Very Low Ion Energy: the Importance of the Sputtering Threshold

Published online by Cambridge University Press:  25 February 2011

Christoph Steinbruchel*
Affiliation:
Materials Engineering Department and Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
Get access

Abstract

A variety of data for physical etching (i.e. sputtering) and for ion-enhanced chemical etching of Si and SiO2 is analyzed in the very-low-ion-energy regime. Bombardment by inert ions alone, by reactive ions, and by inert ions in the presence of reactiveneutrals is considered. In all cases the etch yield follows a square root dependence on the ion energy all the way down to the threshold energy for etching. At the same time, the threshold energy has a non-negligible effect on the etch yield even at intermediate ion energies. The difference between physical and ion-enhanced chemical etch yields can be accounted for by a reduction in the average surface binding energy of the etch products and a corresponding reduction in the threshold energy for etching. These results suggest that, in general, the selectivity for ion-enhanced etch processes relative to physical sputtering can be increased significantly at low ion energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Sigmund, P., in Sputtering by Ion Bombardment I, Vol. 47 of Topics in Applied Physics, edited by Behrisch, R. (Springer, Berlin, 1981) p. 9.Google Scholar
[2] Wilson, W. D., Haggmark, L. G., Biersack, J. P., Phys. Rev. 15, 2458 (1977).Google Scholar
[3] Zalm, P. C., J. Vac. Sci. Technol. B 2, 151 (1984).CrossRefGoogle Scholar
[4] Winters, H. F. and Taglauer, E., Phys. Rev. B 35, 2174 (1987).CrossRefGoogle Scholar
[5] Matsunami, N., Yamamura, Y., Itikawa, Y., Itoh, N., Kazumata, Y., Miyagawa, S., Morita, M., Shimizu, R., Radiat. Eff. Lett. 57, 15 (1980).CrossRefGoogle Scholar
[6] Yamamura, Y., Matsunami, N., Itoh, N., Radiat. Eff. Lett. 68, 83 (1982).Google Scholar
[7] Bohdansky, J., Nucl. Instrum. Methods B 2, 587 (1984).Google Scholar
[8] Steinbrichel, Ch. (to be published).Google Scholar
[9] Laegreid, N. and Wehner, G. K., J. Appl. Phys. 32, 365 (1961).Google Scholar
[10] Harper, J. M. E., Cuomo, J. J., Leary, P. A., Summa, G. M., Kaufman, H. R., Bresnock, F. J., J. Electrochem. Soc. 128, 1077 (1981).CrossRefGoogle Scholar
[11] Tachi, S., Miyake, K., Tokuyama, T., in Proceedings of the Third Symposium on Dry Process (Institute of Electrical Engineers of Japan, Japan, 1981), p. 17; Jpn. J. Appl. Phys. Suppl. 21-1, 21, 141 (1983).Google Scholar
[12] Oostra, D. J., Ingen, R. P. van, Haring, A., Vries, A. E. de, Veen, G. N. A. van, Appl. Phys. Lett. 50, 1506 (1987).Google Scholar
[13] Todorov, S. S. and Fossum, E. R., Appl. Phys. Lett. 52, 365 (1988).Google Scholar
[14] Mizutani, T., Dale, C. J., Chu, W. K., Mayer, T. M., Nucl. Instrum. Methods B 7/5, 825 (1985).CrossRefGoogle Scholar
[15] Kolfschoten, A. W., Haring, R. A., Haring, A., Vries, A. E. de, J. Appl. Phys. 55, 3813 (1984).CrossRefGoogle Scholar
[16] Mayer, T. M. and Barker, T. A., J. Electrochem. Soc. 129, 585 (1982).CrossRefGoogle Scholar
[17] Steinbrüchel, Ch., J. Vac. Sci. Technol. B 2, 38 (1984).Google Scholar
[18] Steinbrüchel, Ch., Lehmann, H. W., Frick, K., J. Electrochem. Soc. 132, 180 (1985); Mat. Res. Soc. Symp. Proc. 38, 157 (1985).CrossRefGoogle Scholar
[19] Steinbrüchel, Ch., Appl. Phys A 36, 37 (1985).CrossRefGoogle Scholar