Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-25T22:12:47.859Z Has data issue: false hasContentIssue false

Physical and Chemical Effects of Focused Ga-Ion Beam on GaAs (100)

Published online by Cambridge University Press:  25 February 2011

Wei Chen
Affiliation:
PHOTONIC MATERIALS AND DEVICES LABORATORY, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, CA 90089-0241
P. Chen
Affiliation:
PHOTONIC MATERIALS AND DEVICES LABORATORY, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, CA 90089-0241
R. Viswanathan
Affiliation:
PHOTONIC MATERIALS AND DEVICES LABORATORY, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, CA 90089-0241
A. Madhukar
Affiliation:
PHOTONIC MATERIALS AND DEVICES LABORATORY, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, CA 90089-0241
Jun Chen
Affiliation:
PHOTONIC MATERIALS AND DEVICES LABORATORY, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, CA 90089-0241
Kian Kaviani
Affiliation:
PHOTONIC MATERIALS AND DEVICES LABORATORY, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, CA 90089-0241
Q. Xie
Affiliation:
PHOTONIC MATERIALS AND DEVICES LABORATORY, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, CA 90089-0241
Kezhong Hu
Affiliation:
PHOTONIC MATERIALS AND DEVICES LABORATORY, UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, CA 90089-0241
Get access

Abstract

Ga droplet formation on GaAs(100) substrates milled by focused Ga ion beam is studied using scanning electron microscopy and scanning Auger microscopy. It is found that Ga droplet formation requires a threshold Ga+ dose of ∽ 1016/cm 2 and is closely correlated to the formation of Ga overlayer at the milled surface and the increase in Ga concentration by ∽ 32% in the subsurface region. The Ga droplet evolution appears to be driven by the instantaneous energy deposited continuously by the ions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.see Proceeding of 2nd Japan-U.S. Seminar on Focused Beam, Ion Technology and Applications, J. Vac. Sci. Technol B9, 24612732 (1991).Google Scholar
2. Carter, G. and Colligon, J.S., Ion Bombardment of Solids, American Elsevier Publishing Company, Inc. New York, 1968)Google Scholar
3. Chen, Samuel, Lee, S.-Tong, Braunstein, G., and Tan, T.Y., Appl. Phys. Lett. 55, 1194 (1989)Google Scholar
4. Gamo, Kenji, Miyake, Hideto, Yuba, Yoshihiko, and Namba, Susumu, J. Vac. Sci. Technol. B 6, 2124 (1988)Google Scholar
5. Dansas, P., J. Appl. Phys. 58, 2212 (1985)CrossRefGoogle Scholar
6. Sadana, D.K., Nuclear Instruments and Methods in Physics Research B7/8, 375 (1985).CrossRefGoogle Scholar
7. Lam, N.Q., Mat. Res. Soc. Symp. Proc. Vol. 100, p29(1988).Google Scholar
8. Kang, H.J., Moon, Y.M., Kang, T.W., Leem, J.Y., Lee, J.J., and Ma, D.S., J. Vac. Sci. Technol. A7, 3251 (1989).CrossRefGoogle Scholar
9. Ishitani, T., Shimase, A., and Tamura, H., Appl. Phys. Lett. 39, 627 (1981).CrossRefGoogle Scholar
10. Takado, N., Asakawa, A., Yuasa, T., Sugata, S., Miyauchi, E., Hashimoto, H., and Ishii, M., Appl. Phys. Lett. 50, 1891 (1987).Google Scholar
11. Kosugi, T., Gamo, K., Namba, S., and Aihara, R., J. Vac. Sci. Technol. 39 2660 (1991).Google Scholar
12. Hornsey, R. and Ishitani, T., Jpn. J. Appl. Phys. 29, 2116 (1990).CrossRefGoogle Scholar
13. Pellerin, J.G., Griffis, D.P., and Russel, P.E., J. Vac. Sci. Technol. B8, 1945 (1990).Google Scholar
14. Tsai, J.C.C. and Morabito, J.M., Surf. Sci. 44, 247 (1974).Google Scholar
15. Chen, Wei, Viswanathan, R., Chen, P., Xie, Q., and Madhukar, A., to be published.Google Scholar