Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-22T17:41:05.536Z Has data issue: false hasContentIssue false

Photoreflectance Study of Strained InAIAs/InP Structures

Published online by Cambridge University Press:  15 February 2011

Jenn-Shyong Hwang
Affiliation:
Department of Physics, National Cheng Kung University, Talnan, Taiwan
W. Y. Chou
Affiliation:
Department of Physics, National Cheng Kung University, Talnan, Taiwan
S. L. Tyan
Affiliation:
Department of Physics, National Cheng Kung University, Talnan, Taiwan
Y. C. Wang
Affiliation:
Department of Physics, National Cheng Kung University, Talnan, Taiwan
J. H. Tung
Affiliation:
Department of Physics, National Cheng Kung University, Talnan, Taiwan
Get access

Abstract

We have studied the photoreflectance spectra at 300 K from a series of strained In1−xAlxAs/InP (0.42<x<0.57) strained structures grown by molecular beam epitaxy. From the observed Franz-Keldysh Oscillation we evaluate the built-in de electric field and hence the surface potential under different strain. We found that the surface Fermi level is not pinned at midgap under different strainwhich results in contrast to AIGaAs and GaAs. In addition, from the observed dependence of the built-in electric field Fdc and surface potential barrier Vm on the top layer thickness, we conclude that the surface states are distributed over two separate regions within the energy band gap under different strain and the densities of the surface states are as low as (2,71α0.05)x 1011 cm−2 for the distribution near the conduction band and (4.29α0.05)x1011 cm-2 for the distribution near the valence band. The Fermi level is weakly pinned while the top layer thickness is within the characteristic region of each sample.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pollak, F. H. and Glembocki, O. J., in Proceedings of Society of Photo-optical Instrumentation Engineers, (SPIE, Belligham, 1988) Vol. 946, p2.Google Scholar
2. Bottka, N., Gaskill, D. K., Sillmon, R. S., Henry, R., and Lesser, R., J. Electron. Matter 17, 161 (1988).Google Scholar
3. Bhattacharys, R. N., Shen, H., Parayanthal, P., Pollak, F. H., Coutts, T. and Aharoni, H., Phys. Rev. B37, 4044 (1988).Google Scholar
4. Yin, X., Pollak, F. H., Pawlowicz, L., O'Neill, T. and Hafizi, M., Appl. Phys. Lett., 56, 1287 (1990).Google Scholar
5. Sydor, Michael, Jahren, Neal, Michel, W. C., Lampert, W. V., Haas, T. W., Yen, M. Y., Mudare, S. M. and Tomich, D. H., J. Appl. Phys. 67, 7423 (1990).Google Scholar
6. Hwang, J. S., Tyan, S. L., Chou, W. Y., Lee, M. L., Weybume, D., Hang, Z., LIn, H. H., and Lee, T. L., Appl. Phys. Lett. 64, 3314 (1994).Google Scholar
7. Hsu, T. M., Tien, Y. C., Lu, N. H., Tsai, S. P., Liu, D. G., and Lee, C. P., J. Appl. Phys. 72, 1065 (1992).Google Scholar
8. Bottka, N., Gaskill, D. K., Griffiths, R. J. M., Bradley, R. R., Joyce, T. B., Ito, C., and McIntyre, D., J. Cryst. Growth. 93 481 (1988).Google Scholar
9. , Landolt-Bornstein (Springer, Berlin, 1982) Vol. 17a.Google Scholar
10. Yin, X., Chen, H. M., Pollak, F. H., Chan, Y., Montano, P. A., Kirchner, P. D., Pettit, G. D., and Woodall, J. M., Appl. Phys. Lett., 58, 260 (1991).Google Scholar
11. Wang, J. J., Master thesis of National Cheng Kung University, P25, (1990).Google Scholar
12. Shen, H., Parayanthal, P., Liu, Y. F., and Pollak, F. H., Rev. Sci Instrum. 58, 1429 (1987).Google Scholar
13. Zhou, Weimin, Dutta, M., Shen, H., Pamulapati, J., Bennett, Brian R., Perry, Clive H., and Weyburne, David W., J. Appl. Phys. 73, 1266 (1993).Google Scholar
14. Chu, P. and Wieder, H. H., J. Vac. Sci. Technol. B 6,1369 (1988).Google Scholar
15. Yan, D., Look, E., Yin, X., and Pollak, Fred H., Appl. Phys. Lett. 65, 186 (1994)Google Scholar