Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-09T14:25:18.246Z Has data issue: false hasContentIssue false

Photoluminescence Study of GaAs/AlGaAs Quantum Wells Grown On Si Substrates

Published online by Cambridge University Press:  28 February 2011

C. Jagannath
Affiliation:
GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, MA 02254
S. Zemon
Affiliation:
GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, MA 02254
P. Norris
Affiliation:
GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, MA 02254
B.S. Elman
Affiliation:
GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, MA 02254
S.K. Shastry
Affiliation:
GTE Laboratories Incorporated, 40 Sylvan Road, Waltham, MA 02254
Get access

Abstract

Photoluminescence and photoluminescence excitation spectroscopies are utilized to study excitons in GaAs/AlGaAs quantum wells (QW's) fabricated using MBE on MOCVD grown GaAs/Si. The experimental results are understood in terms of the biaxial tension of approximately 3 kbar present in the plane of growth for both the QW's and the GaAs buffer. An important consequence of the biaxial tension is that for QW's with well widths larger than ≈15 nm the light- and heavy- hole sub-bands cross each other in energy. This results in the light-hole exciton energy being lower than that of the heavy-hole exciton, opposite to the case of QW's grown on GaAs substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for example Mat. Res. Soc. Symp. Proc. Vol 67 (1986).Google Scholar
2. Windhorn, T.H. and Metze, G.M., Appl. Phys. Lett. 47, 1031 (1985).Google Scholar
3. Fischer, R., Kopp, W., Morkoc, H., Pion, M., Specht, A., Burkhart, G., Appelman, H., McGougan, D., and Rice, R., Appl. Phys. Lett. 48, 1360 (1986).Google Scholar
4. van der Zeil, J.P., Dupuis, R.D., Logan, R.A., Mikulyak, R.M., Pinzone, C.J., and Savage, A., Appl. Phys. Lett 50, 309 (1987).Google Scholar
5. Kaliski, R.W., Holonyak, N. Jr., Hsieh, K.C., Nam, D.W., Lee, J.W., Shichijo, H., Burnham, R.D., Epler, J.E., and Chung, H.F., Appl. Phys. Lett. 50, 836 (1987).Google Scholar
6. Zemon, S., Shastry, S.K., Norris, P., Jagannath, C., and Lambert, G., Solid State Commun. 58, 457 (1986).Google Scholar
7. Akiyama, M., Kawareda, Y., and Kaminishi, K., Jpn. J. Appl. Phys. 23, L843 (1984).Google Scholar
8. Shastry, S. K. and Zemon, S., Appl. Phys. Lett. 49, 467 (1987).Google Scholar
9. Jagannath, C., Koteles, Emil S., Lee, Johnson, Chen, Y.J., Elman, B.S., and Chi, J.Y., Phys Rev. B34, 7027 (1986).Google Scholar
10. Miller, R.C., Kleinman, D.A., and Gossard, A.C., Phys. Rev. B29, 7085 (1984).Google Scholar