Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T08:01:54.852Z Has data issue: false hasContentIssue false

Photoluminescence Study of Damage Introduced in GaN by Ar- and Kr-Plasmas Etching

Published online by Cambridge University Press:  29 December 2011

Yoshitaka Nakano
Affiliation:
Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
Retsuo Kawakami
Affiliation:
The University of Tokushima, 2-1 Minami-Josanjima, Tokushima 770-8506, Japan
Masahito Niibe
Affiliation:
University of Hyogo, 3-1-2 Koto, Kamigori, Ako, Hyogo 678-1205, Japan
Atsushi Takeichi
Affiliation:
The University of Tokushima, 2-1 Minami-Josanjima, Tokushima 770-8506, Japan
Takeshi Inaoka
Affiliation:
The University of Tokushima, 2-1 Minami-Josanjima, Tokushima 770-8506, Japan
Kikuo Tominaga
Affiliation:
The University of Tokushima, 2-1 Minami-Josanjima, Tokushima 770-8506, Japan
Get access

Abstract

We investigated, by employing a photoluminescence technique, the etching damage introduced in near-surface regions of GaN by Ar and Kr plasmas and clarified the differences between the damage characteristics of these regions for the two plasma etching cases. For Ar plasma, the shallow donor-acceptor pair emission at ~3.28 eV was significantly weakened; additionally, a broad blue luminescence band arose at approximately ~3.0 eV. In contrast, for Kr plasma under high gas pressure, we found the recovery of the damage to the same level as the as-grown crystallinity. These differences in the damage characteristics for the two plasma etching cases probably depend upon which atom (N or Ga) is preferentially etched in these cases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B. and Burns, M., J. Appl. Phys. 76, 1363 (1994).Google Scholar
2. Zhu, K., Kuryatkov, V., Borisov, B., Kipshidze, G., Nikishin, S. A., Temkin, H., and Holtz, M., Appl. Phys. Lett. 81, 4688 (2002).Google Scholar
3. Choi, H. W., Chua, S. J., Raman, A., Pan, J. S., and Wee, A. T. S., Appl. Phys. Lett. 77, 1795 (2000).Google Scholar
4. Lee, B., Lee, S., Kim, S., Hwang, I., Park, H., Park, H., and Rhee, J., J. Electrochem. Soc. 148, G592 (2001).Google Scholar
5. Kawakami, R., Inaoka, T., Tominaga, K., and Mukai, T., Jpn. J. Appl. Phys. 48, 08HF01 (2009).Google Scholar
6. Niibe, M., Maeda, Y., Kawakami, R., Inaoka, T., Tominaga, K., and Mukai, T., Physica Status Solidi C 8, 435 (2011).Google Scholar
7. Nakano, Y., Irokawa, Y., Sumida, Y., Yagi, S., and Kawai, H., Physica Status Solidi RRL 4, 374 (2010).Google Scholar
8. Nakano, Y., Matsuki, N., Irokawa, Y., and Sumiya, M., Jpn. J. Appl. Phys. 50, 01AD02 (2011).Google Scholar
9. Armstrong, A., Arehart, A. R., Moran, B., DenBaars, S. P., Mishra, U. K., Speck, J. S., and Ringel, S. A., Appl. Phys. Lett. 84, 374 (2004).Google Scholar
10. Armstrong, A., Li, Q., Bogart, K. H. A., Lin, Y., Wang, G. T., and Talin, A. A., J. Appl. Phys. 106, 053712 (2009).Google Scholar
11. Hofmann, D. M., Kovalev, D., Steude, G., and Meyer, B. K., Phys. Rev. B 52, 16702 (1995).Google Scholar
12. Niebuhr, R., Bachem, K., Bombrowski, K., Maier, M., Plerschen, W., and Kaufmann, U., J. Electron. Mater. 24, 1531 (1995).Google Scholar
13. Cheung, R., Reeves, R. J., Rong, B., Brown, S. A., Fakkeldij, E. J. M., van de Drift, E., and Kamp, M., J. Vac. Sci. Technol. B 17, 2759 (1999).Google Scholar
14. Uzan-Saguy, C., Salzman, J., Kalish, R., Richter, V., Tish, U., Zamir, S., and Prawer, S., Appl. Phys. Lett. 74, 2441 (1999).Google Scholar
15. Cheung, R., Reeves, R. J., Brown, S. A., van der Drift, E., and Kamp, M., J. Appl. Phys. 88, 7110 (2000).Google Scholar
16. Xu, S. J., Li, G., Chua, S. J., Wang, X. C., and Wang, W., Appl. Phys. Lett. 72, 2451 (1998).Google Scholar