Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T04:25:55.090Z Has data issue: false hasContentIssue false

Photoluminescence of Cu(In1-X, GaX)Se2 Epitaxial Thin Films Grown by MOVPE

Published online by Cambridge University Press:  01 February 2011

N. Rega
Affiliation:
Steiner Hahn Meitner Institut Berlin GmbH, Glienickerstr. 100, D-14109 Berlin
S. Siebentritt
Affiliation:
Steiner Hahn Meitner Institut Berlin GmbH, Glienickerstr. 100, D-14109 Berlin
J. Albert
Affiliation:
Steiner Hahn Meitner Institut Berlin GmbH, Glienickerstr. 100, D-14109 Berlin
M. Lux
Affiliation:
Steiner Hahn Meitner Institut Berlin GmbH, Glienickerstr. 100, D-14109 Berlin
Get access

Abstract

To study the intrinsic defect structure, detailed photoluminescence (PL) measurements of epitaxial Cu-rich Cu(In1-X, GaX)Se2 grown by metalorganic vapor phase epitaxy (MOVPE) were performed. Distinct emissions appear at an energy position 80-150meV below the bandgap. Excitation-power-dependent measurements showed blue shifts up to 18meV/decade for these emissions. The temperature dependent PL results in a defect energy for this emission of 50-80meV due to a free-to-bound (FB) transition. This indicates that the emissions of this material are controlled by fluctuating potentials due to high compensation or compositional inhomogeneity. The compositional inhomogeneity is detected by x-ray diffraction (XRD) and occurs especially for epitaxial layers grown at 570°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Romero, M.J., Ramanathan, K., Contreras, M.A. et al., Prog. in PV submitted (2003).Google Scholar
2 Rega, N., Siebentritt, S., Beckers, I. et al., Thin Solid Films in press (2003).Google Scholar
3 Bauknecht, A., Siebentritt, S., Albert, J. et al., J. Appl. Phys. 89, 4391 (2001).Google Scholar
4 Artaud-Gillet, M.C., Duchemin, S., Odedra, R. et al., J. Cryst. Growth to be published (2002).Google Scholar
5 Bauknecht, A., Blieske, U., Kampschulte, T. et al., IOP Conf.Ser. 152, 269 (1998).Google Scholar
6 Reed-Hill, R. E., Physical Metallurgy Principles, Second ed. (D. Van Nostrand Company, New York, 1973).Google Scholar
7 Rega, N., Siebentritt, S., Beckers, I. et al., J. ofCryst. Growth 248, 169 (2003).Google Scholar
8 Schroeder, D.J., Berry, G. D., and Rockett, A. A., Appl. Phys. Lett. 69 (26), 4068 (1996).Google Scholar
9 Yoshino, K., Yokoyama, H., Maeda, K. et al., J. of Cryst. Growth 211, 476 (2000).Google Scholar
10 Pankove, J. I., Optical Processes in Semiconductors, 2nd ed. (Dover Pubns, 1976).Google Scholar
11 Shklovskji, B. I. and Efros, A. L., Electronic Properties of Doped Semiconductors. (Springer-Verlag, Berlin, 1984).Google Scholar
12 Mudriy, A.V., Bodnar, I.V., Viktorov, I.A. et al., presentedatthe11th International Conference on Ternary and Multinary Compounds, University of Stanford, 1997 (unpublished).Google Scholar
13 Wagner, Mt., Dirnstorfer, I., Hofmann, D. M. et al., Phys. Stat. Sol. A 167, 131 (1998).Google Scholar