Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T01:32:02.624Z Has data issue: false hasContentIssue false

Photoluminescence and Photoluminescence Excitation Mechanisms for Porous Silicon and Silicon Oxynitride

Published online by Cambridge University Press:  10 February 2011

Xingsheng Liu
Affiliation:
Virginia Polytechnic Inst and State Univ, Dept of Materials Science and Engineering, Blacksburg, VA 24061–0237
Jesus Noel Calata
Affiliation:
Virginia Polytechnic Inst and State Univ, Dept of Materials Science and Engineering, Blacksburg, VA 24061–0237
Houyun Liang
Affiliation:
Shantou Univ., Science Research Institute, Shantou, China, 515063
Wangzhou Shi
Affiliation:
Shantou Univ., Science Research Institute, Shantou, China, 515063
Xuanyin Lin
Affiliation:
Shantou Univ., Science Research Institute, Shantou, China, 515063
Kuixun Lin
Affiliation:
Shantou Univ., Science Research Institute, Shantou, China, 515063
G. G. Qin
Affiliation:
Peking Univ., Department of Physics, Beijing, China, 100871
Get access

Abstract

Through a comparative study of the light emission and light excitation property of porous silicon (PS) and Si oxide, photoluminescence (PL) and photoluminescence excitation (PLE) mechanisms for blue-light-emitting PS are analyzed. Strong blue light (445nm) and ultraviolet light (365nm) emission from silicon-rich silicon oxynitride films at room temperature were observed. An analysis of the PL and PLE spectra of PS and Si oxide indicated that for blue-light emission from PS, there are two types of photoexcitation processes: photo-excitation occurring in nanometer Si particles (NSP's) and in the Si oxide layers covering NSPs, and radiative recombination of electron-hole pairs taking place in luminescence centers (LCs) located on the interfaces between NSP's and Si oxide and those inside Si oxide layers. The PL spectra of silicon-rich silicon oxynitride films implies that the PL originated from some LCs in SiOx and SiOxNy:H, while PLE spectra indicates that photoexcitation occurs in NSPs, SiOx and SiOxNy:H. The 365 nm band is attributed to the former two photoexcitation processes and the 445 nm one to the third process. As such, the quantum confinement/luminescence center model appears to be a satisfactory model in explaining the experimental results.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, L. T., Appl. Phys. Lett. 57, 1046(1990).Google Scholar
2. Lin, J., Zhang, L. Z., Zhang, B. R., Zong, B. Q., and Qin, G. G., J. Phys. Condens. Matter. 6, 565(1994).Google Scholar
3. Tsybeskov, L., Ju. Vandyshev, V., and Fauchet, P. M., Phys. Rev. E 49, 7821(1994).Google Scholar
4. Cullis, A. G., Canhan, L. T., Williams, G. M., Smith, P. W., and Dosser, O. D., J. Appl. Phys. 75, 493(1994).Google Scholar
5. Deshpande, S. V., Gulari, E., Brown, S. W. and Rand, S. C., J. Appl. Phys. 77, 6534(1995).Google Scholar
6. Boomkosum, W., Kruangam, D. and Panyakeow, S., Jpn. J. Appl. Phys. 32, 1534(1993).Google Scholar
7. Li, A. P., Lidong Zhang, Zhang, Y. X., Qin, G. G., Wang, Xin and Hu, X. W., Appl. Phys. Lett. 69, 4 (1996).Google Scholar
8. Price, K. J., McNeil, L. E., Suvkanov, A., Lrene, E. A., MacFarlance, P. J. and Zvanut, M. E., J. Appl. Phys. 86, 2628(1999).Google Scholar
9. Price, K. J., Sharpe, L. R., McNeil, L. E., and Irene, E. A., J. Appl. Phys. 86, 2638(1999).Google Scholar
10. Hirayama, M., et al. J. Electrochem. Soc. 131, 663(1984).Google Scholar
11. Baumvol, I. J. R., Stedile, F. C., Ganem, J.-J., Trimaille, I., and Rigo, S., Appl. Phys. Lett. 69 (16), 2385 (1996).Google Scholar
12. Ho, V. Q., et al. IEEE Trans. Electron Devices, ED–27, 1436 (1980).Google Scholar
13. Peters, D., Fischer, K. and Muller, J., Sensors and Actuators A, 25–27, 425 (1991).Google Scholar
14. Ye, Chao, Ning, Zhaoyuan, Shen, Mingrong, Cheng, Shanhua, and Gan, Zhaoqiang J. Appl. Phys. 83, 5978(1998).Google Scholar
15. Pool, F. S., J. Appl. Phys. 81 (6), 2839 (1997).Google Scholar
16. Ye, Chao, Ning, Zhaoyuan, Shen, Mingrong, Wang, Hao, and Gan, Zhaoqiang Appl. Phys. Lett. 71 (3), 336 (1997).Google Scholar
17. Tabe, M., Jpn. J. Appl. Phys. 34, L1375 (1995).Google Scholar
18. Tabe, Michiharu and Yamamoto, Takeshi Appl. Phys. Lett. 69 (15), 2222 (1996).Google Scholar
19. Gallard, F., Schiavone, P. and Brault, P., J. Vac. Technol. A 15, 2777(1997).Google Scholar
20. Brandt, M. S., Fuchs, H. D., Stutzmann, M., Weber, J., and Cardona, M., Solid State Commun. 81, 307(1992).Google Scholar
21. Tsai, C., Li, K.-H., Kinosky, D. S., Qian, R.-Z., Tsu, T.-C., Irby, J. T., Banefrjee, S. K., Tasch, A. F., Campell, J. C., Hance, B. K., and White, J. M., Appl. Phys. Lett. 60, 1700(1992).Google Scholar
22. Prokes, S. M., Glembocki, O. J., Bermudez, V. M., Kaplan, R., Friedersdorf, L. E., and Searson, P. C., Phys. Rev. B 45, 13 788 (1992).Google Scholar
23. Koch, F., Petrova-Koch, V., and Muschik, T., J. Lumin. 57, 271(1993).Google Scholar
24. Qin, G. G. and Jia, Y. Q., Solid State Commun. 86, 559(1993).Google Scholar
25. Qin, G. G., Lin, J., Duan, J. Q., and Yao, G. Q., Appl. Phys. Lett. 69, 1689(1996).Google Scholar
26. Roy, A., Jayaram, K., and Sood, A. K., Solid State Commun. 89, 229(1994).Google Scholar
27. Cooke, D. W., Bennet, B. L., Famum, E. H., Hults, W. L., Sickafus, K. E., Smith, J. F., Smith, J. L., Taylor, T. N., Tiwari, P., and Portis, A. M., Appl. Phys. Lett. 68, 1663(1996).Google Scholar
28. Qin, G.G., Liu, X. S., Ma, S. Y., Lin, J., Yao, G. Q., Lin, X. Y. and Lin, K. X., Phys. Rev. B 55, 12876(1997).Google Scholar
29. Liu, X. S., Calata, J. N., Liang, H. Y., Shi, W. Z., Lin, X. Y., Lin, K. X. and Qin, G. G. (to be submitted).Google Scholar