Hostname: page-component-6d856f89d9-sp8b6 Total loading time: 0 Render date: 2024-07-16T09:03:19.431Z Has data issue: false hasContentIssue false

Photoionization Spectra of Traps Responsible for Current Collapse in GaN MESFETs

Published online by Cambridge University Press:  10 February 2011

P. B. Klein
Affiliation:
Naval Research Laboratory, Washington DC 20375–5347, klein@bloch.nrl.navy.mil
J. A. FreitasJr
Affiliation:
Naval Research Laboratory, Washington DC 20375–5347, klein@bloch.nrl.navy.mil
S. C. Binari
Affiliation:
Naval Research Laboratory, Washington DC 20375–5347, klein@bloch.nrl.navy.mil
Get access

Abstract

Current collapse in GaN MESFETS is believed to result from the trapping of carriers in the high resistivity GaN layer, and can be reversed by the application of light. Light photoionizes (or photoneutralizes) the carriers, releasing them from the traps and restoring all or part of the original I-V characteristics of the device. In these investigations we have taken advantage of this effect to characterize the traps responsible for current collapse in an n-channel GaN MESFET. At fixed source-drain voltage, the incremental light-induced drain current, above that measured in the dark, and normalized per incident photon, is measured as a function of wavelength. The resulting photoionization spectrum reflects two absorption thresholds corresponding to two distinct electron traps. Because of the nature of the measurement, these traps can be identified as those responsible for current collapse in the device.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Quiesser, H.J. and Theodorou, D.E., Phys. Rev. Lett. 43, 401(1979).10.1103/PhysRevLett.43.401Google Scholar
2. Theis, T.N. and Wright, S.L., Appl. Phys. Lett. 48, 1374(1986).10.1063/1.97028Google Scholar
3. Khan, M.A., Shur, M.S., Chen, Q.C. and Kuznia, J.N., Electron. Lett. 30, 2175(1994).10.1049/el:19941461Google Scholar
4. Fisher, R., Drummond, T.J., Kopp, W., Morkoc, H., Lee, K. and Shur, M., Electron. Lett. 19,789 (1983).10.1049/el:19830538Google Scholar
5. Binari, S.C., Kruppa, W., Dietrich, H.B., Kelner, G., Wickenden, A.E. and Freitas, J.A. Jr, Solid State Electron. 41, 1549(1997).10.1016/S0038-1101(97)00103-2Google Scholar
6. Ridley, B.K., Quantum Processes in Semiconductors, 3rd ed. (Clarendon Press, Oxford, 1993).Google Scholar
7. Lucovsky, G., Solid State Commun. 3, 299(1965).10.1016/0038-1098(65)90039-6Google Scholar
8. Inkson, J.C., J. Phys. C 14, 1093(1981).10.1088/0022-3719/14/7/012Google Scholar
9. Mooney, P.M., Northrup, G.A., Morgan, T.N. and Grimmeiss, H.G., Phys. Rev. B 37, 8298(1988).10.1103/PhysRevB.37.8298Google Scholar
10. Chantre, A., Vincent, G. and Bois, D., Phys. Rev. B 23, 5335(1981).10.1103/PhysRevB.23.5335Google Scholar
11. Hacke, P., Ramvall, P., Tanaka, S., Aoyagi, Y., Kuramata, A., Horino, K. and Munekata, H., Appl. Phys. Lett. 74, 543(1999).10.1063/1.123180Google Scholar
12. Hirsch, Michele T., Wolk, J.A., Walukiewicz, W. and Hailer, E.E., Appl. Phys. Lett. 71, 1098(1997).10.1063/1.119738Google Scholar
13. Reddy, C.V., Balakrishnan, K., Okumura, H. and Yoshida, S., Appl. Phys. Lett. 73, 244(1998).10.1063/1.121769Google Scholar