Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-17T17:44:02.504Z Has data issue: false hasContentIssue false

Photoinduced Charge Transfer Between Tetracyano-Anthraquino-Dimethane Derivatives and Conjugated Polymers

Published online by Cambridge University Press:  21 March 2011

G. Zerza
Affiliation:
Physikalische Chemie, Johannes Kepler Universität, 4040 Linz, Austria
M. Scharber
Affiliation:
Physikalische Chemie, Johannes Kepler Universität, 4040 Linz, Austria
J. L. Segura
Affiliation:
Departamento de Química Orgánica, Universidad Complutense, 28040 Madrid, Spain
R. Gomez
Affiliation:
Departamento de Química Orgánica, Universidad Complutense, 28040 Madrid, Spain
N. Martin
Affiliation:
Departamento de Química Orgánica, Universidad Complutense, 28040 Madrid, Spain
N. S. Sariciftci
Affiliation:
Physikalische Chemie, Johannes Kepler Universität, 4040 Linz, Austria
Get access

Abstract

The photo-induced charge transfer between tetracyano-anthraquino-dimethane (TCAQ) derivatives and poly(2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylene vinylene) MDMO-PPV was studied by means of photoinduced absorption (PIA) spectroscopy in the VIS and IR spectral region and lightinduced electron spin resonance (LESR) spectroscopy. Three different TCAQ derivatives with alkyl-side chains for increased solubility compared to TCAQ and one of them attached to a C60 molecule serve as strong electron acceptors. The photoinduced absorption in the VIS near-IR range shows a broad plateau around 1.8 eV followed by two peaks at 1.35 and 1.24eV for all three acceptors. All PIA features have a power law excitation intensity dependence with an exponent close to 0.5 as expected for bimolecular kinetics. The modulation frequency dependent excited state absorption decreases with a power law. LESR studies of all donor-acceptor combinations show one radical line at a g = 2.0028 with.H = 3.5 Gauss, originating from TCAQ anion and the polymer cation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Janssen, R. A. J., Moses, D. and Sariciftci, N. S., J. Chem. Phys. 101, 9519 (1994)Google Scholar
[2] Kraabel, B., Hummelen, J. C., Vacar, D., Moses, D., Sariciftci, N. S., Heeger, A. J. and Wudl, F., J. Chem.Phys. 104, 4267 (1996)Google Scholar
[3] Sariciftci, N. S., Smilowitz, L., Heeger, A. J. and Wudl, F., Science 258, 1474 (1992)Google Scholar
[4] Janssen, R. A. J., Christiaans, M. P.T., Hare, C., Martin, N., Sariciftci, N. S., Heeger, A. J. and Wudl, F., J. Chem. Phys. 103, 8840 (1995)Google Scholar
[5] Wei, X., Vardeny, Z. V., Sariciftci, N. S. and Heeger, A. J., Phys. Ref. B 53, 2187 (1996)Google Scholar
[6] Dyakonov, V., Zorinaints, G., Scharber, M., Brabec, C. J., Janssen, R. A. J., Hummelen, J. C. and Sariciftci, N. S., Phys. Rev. B 59, 8019 (1999)Google Scholar
[7] Kini, A. M., Cowan, D. O, Gerson, F. and Möckel, R., J. Am. Chem. Soc. 107, 556 (1985)Google Scholar
[8] Fichou, D., Horowitz, G., Xu, B. and Garnier, F., Synth. Met. 39, 243 (1990)Google Scholar