Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-26T07:23:38.016Z Has data issue: false hasContentIssue false

Photo-Hall, Pr, Pl and Photoconductivity Study On Native Defects in CuInS2

Published online by Cambridge University Press:  22 February 2011

H. Y. Ueng
Affiliation:
Department of Electrical Engineering, National Sun Yet-Sen University, Kaoshiung, Taiwan, R.O.C.
Y. H. Cheng
Affiliation:
Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.
H. L. Hwang
Affiliation:
Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.
Get access

Abstract

By correlating the results of photoreflectance, photoconductivity, photoluminescence, and differential-Hall and photo-Hall measurements with the stoichiometry, for a number of undoped single crystal samples, we could conclude two donor levels (35 meV, 70 meV) and three acceptor levels (100 meV, 155 meV, 170 meV) distributed in the forbidden ga.p for undoped CuInS2 samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

]1] Hsu, Y.J., Yang, M.H., Tang, R.S., Hsu, T.M. and Hwang, H.L., Cryst. Growth 20, 83 (1984)Google Scholar
[2] Tell, B., Shay, J.b. and Kasper, H.M., J. Appl. Phys. 43, 2469 (1972)Google Scholar
[3] Ueng, H.Y. and Hwang, H.L., J. Phys. Chem. Solids, 80– 12, 1297 (1989)Google Scholar
[4] Gonzalez, J., Torreo, J.A. and Perez, G.S., Phys. Stat. Sol. (a) 69, K37 (1982)CrossRefGoogle Scholar
[5] Shay, J.L., Phys. Rev. B 2, 803 (1970)Google Scholar
[6] Bhattachaarya, R.N., Shen, H., Parayanthal, P. and Pollak, F.H., Phys. Rev. B 37, 4044 (1988)Google Scholar
[7] Verheijen, A.W., Giling, L.J. and Bloem, J., J. Mater. Res. Bull. 14, 237 (1979)CrossRefGoogle Scholar
] Hsu, T.M. and Lin, J.H., Phys. Rev. B 37, 4106 (1988)Google Scholar
[9] LShay, J. and Wernick, J.H., Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications, Pergamon Press, New York, p.4, 12,118, 1975 Google Scholar
[10] Mora, S., Romeo, N. and Tarricone, L., Solid State Commun. 29, 155 (1979)CrossRefGoogle Scholar
[11] Kazmerski, L.L. and Shieh, C.C., Thin Solid Films 41, 35 (1977)Google Scholar
[12] Lobo, D.C..J. Vac Sci. Technil 15, 265 (1981) Solids 37, 173 (1976)Google Scholar
[14] Vecchi, M.P. and Ramos, J., J. Appl. Phys. 52(3), 1981 Google Scholar
[15] Horig, V., Kuhn, G., Moller, W., Muller, A., Neumann, H. and Reccius, E., Kristall und Teclnik 14, 229 (1979)Google Scholar
[16] Mandel, L., Tomlinson, R.D., Hamnpshire, M.J. and Neumann, H., Solid state commun. 32, 201 (1979)CrossRefGoogle Scholar
[17] Verherijn, A.W., Thesis, Univ. of Nijmegen, Nijmegen, Netherland, 1979 Google Scholar
[18] Pankov, J.l., Optical Processes in Semiconductors, Dover, New York, 1975 Google Scholar
[19] Look, D.C. and Manthlruthil, J.C., J. Phys. Chem. Solids 37, 173 (1976)CrossRefGoogle Scholar
[20] Lablou, N. and Masse, G., J. Apll. Phys. 52, 978 (1981)Google Scholar
[21] Binsma, J.J.M., J. Luminescence 27, 35 (1982)CrossRefGoogle Scholar
[22] lakemore, J.S., Semiconductor Statistics, Pergamon Press, Oxford,1962 Google Scholar
[23] Wiley, J.D. and Didomenico, M. Jr, Phys. Rev. B 2, 427 (1970)Google Scholar
[24] Lange, P., Neff, H., Fearheiley, M.L. and Bachmann, J., Electronic Materials 14, 6 (1985)Google Scholar