Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-02T07:36:36.318Z Has data issue: false hasContentIssue false

Photoelastic Waveguides Using Strain-Compensated InAsP/InGaP Multi-Quantum-Wells

Published online by Cambridge University Press:  15 February 2011

Q. Z. Liu
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego La Jolla, CA 92093
X. B. Mei
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego La Jolla, CA 92093
L. S. Yu
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego La Jolla, CA 92093
C. W. Tu
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego La Jolla, CA 92093
S. S. Lau
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego La Jolla, CA 92093
Get access

Abstract

Photoelastic optical waveguides using strain-compensated InAsP/InGaP multiplequantum-well (MQW) have been fabricated. Lateral light confinement for waveguiding is achieved by introducing stress into semiconductor heterostructures with stable WNi surface stressor stripes. The waveguides have been characterized at both 1.52 μm and 1.32 μm wavelength in term of TE/TM intensity ratio. At 1.52 μm, the waveguides favor the propagation of TE mode, and the TE/TM intensity ratio can be as large as 15 dB. At 1.32 μm, the TE and TM intensity can be comparable. Anisotropy of waveguides fabricated along [110] or [110] directions has also been observed in term of TE/TM intensity ratio, which suggests the presence of anisotropic property of the strain-compensated MQW.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zucker, J. E., Bar-Joseph, I., Miller, B. I., Koren, U., and Chemla, D. S., Appl. Phys. Lett. 54, 10 (1989).Google Scholar
2. Chiu, T. H., Zucker, J. E., and Woodard, T. K., Appl. Phys. Lett. 59, 3452 (1991).Google Scholar
3. Hou, H. Q., Cheng, A. N., Wieder, H. H., Chang, W. S. C., and Tu, C. W., Appl. Phys. Lett. 63, 1833 (1993).Google Scholar
4. Chin, M. K., Yu, P. K. L., and Chang, W. S. C., IEEE J. Quantum Electron. QE–27, 696 (1991).Google Scholar
5. Woodard, T. K., Chiu, T. H., and Sizer, Theodore II, Appl. Phys. Lett. 60, 2846 (1992).Google Scholar
6. Jiang, X. S. and Yu, P. K. L., Appl. Phys. Lett. 65, 2536 (1994).Google Scholar
7. Mei, X. B., and Tu, C. W., to be submitted to Appl. Phys. Lett.Google Scholar
8. Campbell, J. C., Blum, F. A., Shaw, D. W., and Lawley, K. L., Appl. Phys. Lett. 27, 202(1975).Google Scholar
9. Kirkby, P. A., Selway, P. R., and Westbrook, L. D., J. Appl. Phys. 50, 4567–79(1979).Google Scholar
10. Liu, Q. Z., Deng, F., Yu, L. S., Guan, Z. F., Pappert, S. A., Yu, P. K. L., and Lau, S. S., to be published in J. Appl. Phys.Google Scholar
11. Jiang, X. S., Liu, Q. Z., Yu, L. S., Guan, Z. F., Xia, W., Pappert, S. A., Yu, P. K. L., and Lau, S. S., Materials Chemistry and Physics 38, 195(1994).Google Scholar
12. Liu, Q. Z., Jiang, X. S., Yu, L. S., Guan, Z. F., Yu, P. K. L., and Lau, S. S., to be published in Journal of Electronic Materials.Google Scholar