Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T16:35:39.861Z Has data issue: false hasContentIssue false

Photo- and Thermal Annealing-Induced Processes in Carbon Nanotube Transistors

Published online by Cambridge University Press:  01 February 2011

Moonsub Shim
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St. Urbana, IL 61801
Giles P. Siddons
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St. Urbana, IL 61801
Jae Kyeong Jeong
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St. Urbana, IL 61801
David Merchin
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St. Urbana, IL 61801
Get access

Abstract

Photoinduced conductivity changes and effects of thermal annealing in carbon nanotube transistors have been examined. Low-intensity ultraviolet light significantly reduces the p-channel conductance while simultaneously increasing the n-channel conductance. A combination of optical absorption and electron transport measurements reveals that these changes occur without variations in dopant concentrations. Measurements with different metals reveal that UV induces oxygen desorption from the electrodes rather than from nanotubes. In Ti-nanotube contact where the Schottky barrier plays an important role, photodesorption of oxygen mainly occurs from the native oxide of Ti electrodes. Decrease in the p-channel conductance arises from the metal work function change which causes larger hole Schottky barrier. Non-Schottky Pd-contacted nanotube transistors do not show photodesorption effects with low intensity UV. Thermal annealing of nanotube transistors with Ti/Au electrodes also leads to the disappearance of the photodesorption effects. However, a noticeable p-doping is observed to upon air exposure after thermal annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Carbon Nanotubes: Synthesis, Structure, Properties and Applications, edited by Dresselhaus, M., Dresselhaus, G., and Avouris, Ph. (Springer, Berlin, 2001).Google Scholar
2. Bockrath, M., Cobden, D. H., Lu, J., Rinzler, A. G., Smalley, R. E., Balents, L., McEuen, P. L., Nature 397, 598 (1999).Google Scholar
3. Bochtold, A., Hadley, P., Nakanishi, T., and Dekker, C., Science 294, 1317 (2001).Google Scholar
4. Kong, J., Franklin, N. R., Zhou, C., Chapline, M. G., Peng, S., Cho, K., and Dai, H., Science 287, 622 (2000).Google Scholar
5. O'Connell, M. J., Bachilo, S. M., Huffman, C. B., Moore, V. C., Strano, M. S., Haroz, E. H., Rialon, K. L., Boul, P. J., Noon, W. H., Kittrell, C., Ma, J., Hauge, R. H., Weisman, R. B., and Smalley, R. E., Science 297, 593 (2002).Google Scholar
6. Chen, R. J., Franklin, N. R., Kong, J., Cao, J., Tombler, T. W., Zhang, Y., and Dai, H.., Appl. Phys. Lett. 79, 2258 (2001).Google Scholar
7. Shim, M. and Siddons, G. P., Appl. Phys. Lett. 83, 3564 (2003).Google Scholar
8. Collins, P. G., Bradley, K., Ishigami, M., and Zettl, A., Science 287, 1801 (2001).Google Scholar
9. Heinze, S., Tersoff, J., Martel, R., Derycke, V., Appenzeller, J., and Avouris, Ph., Phys. Rev. Lett. 89, 6801 (2002).Google Scholar
10. Sumanasekera, G. U., Adu, C. K. W., Fang, S., and Eklund, P. C., Phys. Rev. Lett. 85, 1096 (2000).Google Scholar
11. Park, J. and McEuen, P. L., Appl. Phys. Lett. 79, 1363 (2001).Google Scholar
12. Derycke, V., Martel, R., Appenzeller, J., and Avouris, Ph., Appl. Phys. Lett. 80, 2773 (2002).Google Scholar
13. Soh, H. T., Quate, C. F., Morpurgo, A. F., Marcus, C. M., Kong, J., and Dai, H., Appl. Phys. Lett. 75, 627 (1999).Google Scholar
14. Fuhrer, M. S., Kim, B. M., Durkop, T., Brintlinger, T., Nano Lett. 2, 755 (2002).Google Scholar
15. Radosevljevi, M., Freitag, M., Thadani, K. V., Johnson, A. T., Nano Lett. 2, 761 (2002).Google Scholar
16. Cui, J. B., Sordan, R., Burghard, M., and Kern, K., Appl. Phys. Lett. 81, 3260 (2002).Google Scholar
17. Kim, W., Javey, A., Vermesh, O., Wang, Q., Li, Y., Dai, H., Nano Lett. 3, 193 (2003).Google Scholar
18. Hanley, L., Guo, X., and Yates, J. T., J. Chem. Phys. 91, 7220 (1989).Google Scholar
Rusu, C. N. and Yates, J. T., Langmuir 13, 4311 (1997).Google Scholar
19. Yaish, Y., Park, J. –Y., Rosenblatt, S., Sazonova, V., Brink, M., McEuen, P. L., preprint.Google Scholar