Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-06T22:25:20.740Z Has data issue: false hasContentIssue false

Phosphorus Doping into Silicon Using ArF Excimer Laser

Published online by Cambridge University Press:  21 February 2011

Abdelilah Slaoui
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS nº292), B.P. 20, F-67037 STRASBOURG CEDEX, France
Francois Foulon
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS nº292), B.P. 20, F-67037 STRASBOURG CEDEX, France
Eric Fogarassy
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS nº292), B.P. 20, F-67037 STRASBOURG CEDEX, France
Paul Siffert
Affiliation:
Centre de Recherches Nucléaires (IN2P3), Laboratoire PHASE (UPR du CNRS nº292), B.P. 20, F-67037 STRASBOURG CEDEX, France
Get access

Abstract

Chemical doping of single-crystal silicon in a PF5 atmosphere is performed byirradiation with an ArF excimer laser working at 193 nm. We have investigated the dependence of doping parameters such as the number of pulses and PF5 gas pressure on the sheet resistance and the impurity concentration profiles. From these results, it is found that phosphorus atoms are produced by pyrolysis of PF5 molecules adsorbed (chemisorbed at low pressure and physisorbed at pressure higher than 1 Torr) on thesilicon surface. As for the incorporation mechanism, it is shown that the process is external rate limited for doping in PF5 ambient whereas mainly diffusion limitedfor doping using only the chemisorbed layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Deutsch, T.F., Ehrlich, D.J., Osgood, R.M. and Liau, Z.L., Appl. Phys. Lett. 36, 847 (1980).Google Scholar
2 Deutsch, T.F., Ehrlich, D.J., Rathman, D.D., Silversmith, D.J., and Osgood, R.M., Appl. Phys. 39, 825 (1981).Google Scholar
3. Young, R.T., Wood, R.F., and Christie, W.H., J. Appl. Phys. 5, 1178 (1982).Google Scholar
4. Fogarassy, E., Stuck, R., Grob, J.J. and Siffert, P., J. Appl. Phys. 52, 1076 (1982).Google Scholar
5 Stuck, R., Fogarassy, E., Muller, J.C., Hodeau, M., Wattiaux, A. and Siffert, P., Appl. Phys. Lett. 38, 715 (1981).Google Scholar
6. Sameshima, T., Usui, S. and Sekiya, M., J. Appl. Phys. 62, 711 (1987).Google Scholar
7 Carey, P.G., Sigmon, T.W., Press, R.L. and Fahlen, T.S., IEEE Electron Device Left. EDL–6, 291 (1985)Google Scholar
8 Ibbs, K.G. and Lloyd, M.L., in Laser Diagnostics and Photochemical Processing for Semiconductor Devices, edited by Osgood, R.M., Brueck, S.R.J., Schlossberg, H.R., (Mater. Res. Soc. Symp. 17, North Holland, Amsterdam, 1983) p. 243.Google Scholar
9 Sigmon, T.W., in Photon, Beam, and Plasma Stimulated Chemical Processes at Surfaces, edited by Donnelly, V.M., Herman, I.P., Hirose, M. (Mater. Res. Soc. Symp. Proc. 75, Pittsburgh, PA 1987) p. 619.Google Scholar
10. Kato, S., Nagahori, T., and Matsumoto, S., J. Appl. Phys. 62, 3656 (1987).Google Scholar
11. Carey, P.G., Weiner, K.H., and Sigmon, T.W., IEEE Electron Device Lett. EDL–9, 542 (1988).Google Scholar
12. Landi, E., Carey, P.G., and Sigmon, T.W., IEEE Transactions on computer-aided design 7, 205 (1988).Google Scholar
13. Foulon, F., Slaoui, A., Fogarassy, E., Stuck, R., Fuchs, C. and Siffert, P., Appl. Surf. Sci. 36, 384 (1989).Google Scholar
14. Slaoui, A., Foulon, F., Bianconi, M., Correra, L., Nipotti, R., Stuck, R., Unamuno, S., Fogarassy, E., and Nicoletti, S., in Laser and Particle-Beam Modification of Chemical Processes on Surfaces, edited by Johnson, A.W., Loper, G.L. and Sigmon, T.W. (Mater. Res. Soc. Symp. Proc. 129 1989) in press.Google Scholar
15. Bentini, G.G., Bianconi, M. and Summonte, C., Appl. Phys. A45, 317 (1988).Google Scholar
16. Correra, L., Bentini, G.G., Bianconi, M., Nipotti, R., and Patti, D.A., Appl. Surf. Sci. 36, 394 (1989).Google Scholar
17. Kato, S., Saeki, H., Wada, J. and Matsumoto, S., J. Electrochem. Soc., Sol. St. Sc. and Techn. 135, 1030 (1987).Google Scholar
18. Liu, T.M. and Oldham, W.G., IEEE Electron Device Left. EDL–4, 59 (1983).Google Scholar
19. Foulon, F., Slaoui, A., and Siffert, P., in Beam Processina and Laser Chemistry edited by Boyd, I.W. and Rimini, E. (Europ. Mater. Res. Soc. Symp. Proc., North Holland, Amsterdam, 1989) in press.Google Scholar
20. Muller, J.C., and Siffert, P., Rad. Effects 63, 81 (1982).Google Scholar
21. Foulon, F., Fogarassy, E., Slaoui, A., Fuchs, C., Unamuno, S., and Siffert, P., Appl. Phys. A45, 361 (1988).Google Scholar
22. Tsai, J.C.C. in VLSI Technology, edited by Sze, S.M. (Mc Graw-Hill, New York, 1983) p. 185.Google Scholar
23. Shashkov, Y.M. and Gurevich, V.M., Russ. U. Phys. Chem. 42, 1082 (1967).Google Scholar
24. Unamuno, S. and Fogarassy, E., Appl. Surf. Sci. 36, 1 (1989).Google Scholar
25. Grove, A.S., in Physics and Technology of Semiconductor Devices (Wiley and Sons, New York, 1967) p. 65.Google Scholar
26. White, C.W., J. Phys. Vol. 44, n°10, C5, 145 (1983).Google Scholar