Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T03:37:30.862Z Has data issue: false hasContentIssue false

Phosphorescence Quantum Efficiency and Intermolecular Interaction of Iridium(III) Complexes in Co-Deposited Films with Organic Semiconducting Hosts

Published online by Cambridge University Press:  01 February 2011

Yuichiro Kawamura
Affiliation:
CREST program, Japan Science and Technology Agency (JST), 1–32–12 Higashi, Shibuya, Tokyo 150–0011, Japan
Kenichi Goushi
Affiliation:
Department of Photonics Materials Science, Chitose Institute of Science & Technology (CIST), 758–65 Bibi, Chitose, Hokkaido 066–8655, Japan
Jason Brooks
Affiliation:
Universal Display Corporation, 375 Phillips Blvd., Ewing, NJ 08618, U.S.A.
Julie J. Brown
Affiliation:
Universal Display Corporation, 375 Phillips Blvd., Ewing, NJ 08618, U.S.A.
Hiroyuki Sasabe
Affiliation:
CREST program, Japan Science and Technology Agency (JST), 1–32–12 Higashi, Shibuya, Tokyo 150–0011, Japan Department of Photonics Materials Science, Chitose Institute of Science & Technology (CIST), 758–65 Bibi, Chitose, Hokkaido 066–8655, Japan
Chihaya Adachi
Affiliation:
CREST program, Japan Science and Technology Agency (JST), 1–32–12 Higashi, Shibuya, Tokyo 150–0011, Japan Department of Photonics Materials Science, Chitose Institute of Science & Technology (CIST), 758–65 Bibi, Chitose, Hokkaido 066–8655, Japan
Get access

Abstract

We accurately measured the absolute photoluminescence (PL) quantum efficiency (ηPL) of organic solid-state thin films by using an integrating sphere. We measured the ηPL of conventional organic materials used in organic light emitting diodes, such as a tris (8-quinolionolato)aluminum(III) complex (Alq3), and a phosphorescent 1.5mol%-fac-tris(2-phenylpyridyl)iridium(III):4, 4'-bis(carbazol-9-yl)-2, 2'-biphenyl [Ir(ppy)3:CBP] co-deposited film. Alq3 and Ir(ppy)3:CBP showed a ηPL = 20 ± 1% and 97 ± 2%, which corresponded well to external electroluminescence efficiency using these materials. We also measured red emitting bis[2-(2'-benzothienyl)pyridinato-N, C3'] (acetylacetonato) iridium(III) [Btp2Ir(acac)] with CBP, and the blue complex, bis[(4, 6-difluorophenyl)pyridinato-N, C2](picolinato)iridium(III) [FIrpic], with m-bis(N -carbazolyl)benzene. The maximum ηPL values for Btp2Ir(acac), and FIrpic were 51±1% (at 1.4mol%), and 99±1% (1.2mol%), respectively. These results suggest that the ηEL of red phosphorescent OLEDs using Btp2Ir(acac) as the dopant can be as high as 10%, and blue devices using FIrpic can reach the theoretical limit of 20%.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFFERENCES

1. Tang, C. W. and VanSlyke, S. A., Appl. Phys. Lett. 51, 913 (1987).Google Scholar
2. Baldo, M. A., Lamansky, S., Burrows, P. E., Thomson, M. E. and Forrest, S. R., Appl. Phys. Lett. 75, 4 (1999).Google Scholar
3. Adachi, C., Baldo, M. A., Thompson, M. E. and Forrest, S. R., J. Appl. Phys. 90, 5048 (2001).Google Scholar
4. Ikai, M., Tokito, S., Sakamoto, Y., Suzuki, T. and Taga, Y., Appl. Phys. Lett. 79, 156 (2001).Google Scholar
5. Hide, F., Diaz-García, M. A., Schwartz, B. J., Andersonn, M. R., Pei, Q., and Heeger, A. J., Science 273, 1833 (1996).Google Scholar
6. Kozlov, V. G., Bulovic, V., Burrows, P. E., and Forrest, S. R., Nature (London) 389, 362 (1997).Google Scholar
7. Yamamoto, H., Oyamada, T., Sasabe, H. and Adachi, C., Appl. Phys. Lett. 84, 1401 (2004).Google Scholar
8. Kawamura, Y., Yamamoto, H., Goushi, K., Sasabe, H., Adachi, C. and Yoshizaki, H., Appl. Phys. Lett. 84, 2724 (2004).Google Scholar
9. Sakanoue, T., Fujiwara, E., Yamada, R. and Tada, H., Appl. Phys. Lett. 84, 3037 (2004).Google Scholar
10. Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Adachi, C., Burrows, P. E., Forrest, S. R. and Thompson, M. E., J. Am. Chem. Soc. 123, 4303 (2001).Google Scholar
11. Goushi, K., Kawamura, Y., Sasabe, H. and Adachi, C., Jpn. J. Appl. Phys. 43, L937 (2004).Google Scholar
12. Eckerle, K. L., Vanable, J. W. H. and Weidner, V. R., Appl. Opt. 15, 703 (1976).Google Scholar
13. Greenham, N. C., Samuel, I. D. W., Hayes, G. R., Phillips, R. T., Kessener, Y. A. R. R., Moratti, S. C., Holms, A. B. and Friend, R. H., Chem. Phys. Lett. 241, 89 (1995).Google Scholar
14. Mattoussi, H., Murata, H., Merritt, C. D., Iizumi, Y., Kido, J. and Kafafi, Z. H., J. Appl. Phys. 86, 4642 (1999).Google Scholar
15. Kawamura, Y., Sasabe, H. and Adachi, C., Jpn. J. Appl. Phys, 43, 7729 (2004)Google Scholar
16. Gu, G., Garbuzov, D. Z., Burows, P. E., Venkatesh, S., Forrest, S. R. and Thompson, M. E., Opt. Lett. 22, 396 (1997).Google Scholar
17. Vanslyke, S. A., Bryan, P. S. and Tang, C. W., Ext. Abstr. p.195 (The 8th International Workshop on Inorg. and Org. Electroluminescence/EL96 Berlin).Google Scholar
18. Kawamura, Y., Goushi, K., Brooks, J., Brown, J. J., Sasabe, H. and Adachi, C., Appl. Phys. Lett. (in press). Google Scholar
19. Adachi, C., Kwong, R. C., Djurovich, P., Adamovich, V., Baldo, M. A., Thompson, M. E. and Forrest, S. R., Appl. Phys. Lett. 79, 2082 (2001).Google Scholar
20. Holmes, R., Forrest, S. R., Tung, Y.-J., Kwong, R. C., Brown, J. J., Garon, S. and Thompson, M. E., Appl. Phys. Lett. 82, 2422 (2003).Google Scholar