Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T06:01:26.806Z Has data issue: false hasContentIssue false

Phase Stability of The Mixed-Conducting Sr-Fe-Co-O System

Published online by Cambridge University Press:  10 February 2011

B. Ma
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
U. Balachandran
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
J. P. Hodges
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
J. D. Jorgensen
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
D. J. Miller
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
J. W. Richardson Jr
Affiliation:
Intense Pulsed Neutron Source, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

Mixed-conducting ceramic oxides have potential uses in high-temperature electrochemical applications such as solid oxide fuel cells, batteries, sensors, and oxygen-permeable membranes. The Sr-Fe-Co-O system combines high electronic/ionic conductivity with appreciable oxygen permeability at elevated temperatures. Dense ceramic membranes made of this material can be used to separate high-purity oxygen from air without the need for external electrical circuitry, or to partially oxidize methane to produce syngas. Samples of Sr2Fe3-xCoxOy (with x = 0,0.6,1.0, and 1.4) were prepared by solid-state reaction method in atmospheres with various oxygen partial pressures (pO2) and were characterized by X-ray diffraction, scanning electron microscopy, and electrical conductivity testing. Phase components of the sample are dependent on cobalt concentration and pO2. Electrical conductivity increases with increasing temperature and cobalt content in the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Takahashi, T. and Iwahara, H., Energy Convers., 11, 105 (1971).10.1016/0013-7480(71)90121-5Google Scholar
2. Steele, B. C. H., Mater. Sci. Ene. B-Solid State M., 13, 79 (1992).Google Scholar
3. Minh, N. Q., J. Am. Ceram. Soc., 76, 563 (1993).Google Scholar
4. DiCosimo, R., Burrington, J. D., and Grasselli, R. K., J. Catal., 102, 377 (1992).Google Scholar
5. Kendall, K. R., Navas, C., Thomas, J. K., and Loye, H.-C., Solid State Ionics, 82, 215 (1995).10.1016/0167-2738(95)00207-4Google Scholar
6. Balachandran, U., Morissette, S. L., Dusek, J. T., Mieville, R. L., Poeppel, R. B., Kleefisch, M. S., Pei, S., Kobylinski, T. P., and Udovich, C. A., Proc. Coal Liquefaction and Gas Conversion Contractor Review Conf., Rogers, S. et al., eds., Vol. 1, pp. 138160, U.S. Dept. of Energy, Pittsburgh Energy Technology Center (1993).Google Scholar
7. Balachandran, U., Dusek, T. J., Sweeney, S. M., Poeppel, R. B., Mieville, R. L., Maiya, P. S., Kleefisch, M. S., Pei, S., Kobylinski, T. P., Udovich, C. A., and Bose, A. C., Am. Ceram. Soc. Bull., 74, 71 (1995).Google Scholar
8. Teraoka, Y., Zhang, H. M., Furukawa, S., and Yamozoe, N., Chem. Lett., 1985, 1734 (1985).Google Scholar
9. Teraoka, Y., Nobunaga, T., and Yamazoe, N., Chem. Lett., 1988, 503 (1988).Google Scholar
10. Ma, B., Park, J.-H., Segre, C. U., and Balachandran, U., Mater. Res. Soc. Svmp. Proc., 393, 49 (1995).Google Scholar
11. Ma, B., Balachandran, U., Chao, C.-C., Park, J.-H., and Segre, C. U., Ceram. Trans. Series. 73, 169 (1997).Google Scholar
12. Balachandran, U., Dusek, J. T., Maiya, P. S., Mieville, R. L., Ma, B., Kleefisch, M. S., and Udovich, C. A., presented at 11th Intersociety Cryogenic Symp., Energy Week Conf. & Exhibition, Houston, Jan. 28-30, 1997.Google Scholar
13. Pei, S., Kleefisch, M. S., Kobylinski, T. P., Faber, J., Udovich, C. A., Zhang-McCoy, V., Dabrowski, B., Balachandran, U., Mieville, R. L., and Poeppel, R. B., Catal. Lett., 30, 201 (1995).10.1007/BF00813686Google Scholar
14. Iwahara, H., Uchida, H., Morimoto, K., and Hosgoi, S., J. Appl. Electrochem., 19, 448 (1989).10.1007/BF01015250Google Scholar
15. Yoshiasa, A., Ueno, K., Kanamaru, F., and Horiuchi, H., Mater. Res. Bull., 21, 175 (1986).10.1016/0025-5408(86)90204-7Google Scholar
16. Rietveld, H. M., J. Appl. Crvst., 2, 65 (1969).10.1107/S0021889869006558Google Scholar
17. Greaves, C., Jacobson, A. J., Tofield, B. C., and Fender, B. E. F., Acta Crvst., B31, 641 (1975).10.1107/S0567740875003536Google Scholar
18. Hodges, J. P., Jorgensen, J. D., Miller, D. J., Ma, B., Balachandran, U., and Richardson, J. W. Jr, this proceedings.Google Scholar