Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T04:23:27.605Z Has data issue: false hasContentIssue false

Phase Formations in Co/Si, Co/Ge, and Co/Si1−xGex by Solid Phase Reactions

Published online by Cambridge University Press:  03 September 2012

Z. Wang
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
Y. L. Chen
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
H. Ying
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
R. J. Nemanich
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
D. E. Sayers
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
Get access

Abstract

Phase formations in Co thin films (200Å in thickness) reacting with atomically clean Si(100), Ge(100), and Si0.80Ge0.20 epitaxial layer (800Å in thickness on Si(100) substrates) in UHV have been investigated. For the Co/Si system, it is found that CoSi (FeSi structure) is formed at 375°C through a very disordered CoSi phase, and the final CoSi2 phase is formed at 575°C. On the other hand, the Co5Ge7 phase was identified for the Co/Ge samples annealed at 300°C and 450°C and the final CoGe2 phase is formed at 600°C. For the Co/Si0.8 Ge0.20 samples annealed from 400°C to 600°C, Co(Si1−yGey) phases with y∼0.10 were detected, and for annealing at 700°C, only the CoSi2 phase was formed. These results indicate a preferential Co- Si reaction when annealing the Co/SiGe structure. It was also found that the sheet resistance of the reacted thin films depend strongly on annealing temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stork, J. M., Prinz, E. J., and Magee, C. W., IEEE Electron Device Lett., 12, (6), 303 (1991).Google Scholar
2. Garone, P. M., Venkataraman, V., and Sturm, J. C., IEDM 90, 383 (1990).Google Scholar
3. Arienzo, M., Comfort, J. H., Crabbe, E. F., Harame, D. L., Iyer, S. S., Meyerson, B. S., Patton, G. L., Stork, J. M. C., and Sunnin, Y. C. in Silicon Molecular Beam Epitaxy. edited by Bean, J. C., Iyer, S. S., and Wang, K. L. (Mater. Res. S°C. Pr°C. 220, Pittsburgh, PA 1991) pp. 421431.Google Scholar
4. Houghton, D. C., Noel, J.P., and Rowell, N. L. in Silicon Molecular Beam Epitaxy. edited by Bean, J. C., Iyer, S. S., and Wang, K. L. (Mater. Res. Soc. Proc. 220, Pittsburgh, PA 1991) pp.299320.Google Scholar
5. Thomas, O., D'Heurle, F.M., Delage, S., and Scilla, G., Applied Surface Science, 38, 27 (1989).Google Scholar
6. Hong, Q. Z. and Mayer, J. W., J. Appl. Phys. 66, 611 (1989)CrossRefGoogle Scholar
7. Liou, H. K., Wu, X., and Gennser, U., Appl. Phys. Lett. 60, 577 (1992).Google Scholar
8. Wang, P. J., Chang, Chin-An, Meyerson, B. S., Chu, J. O., and Tejwani, M. J., Advanced Metallization and Processing for Semiconductor Devices and Circuits - II, edited by Katz, A., Murarka, S. P., Nissim, Y. I., and E, J. M.. Harper (Mater. Res. Soc. Proc. 260, Pittsburgh; PA 1992) pp. 863868.Google Scholar
9. Ridgway, M. C., Elliman, R. G., Hauser, N., Baribeau, J.-M., and Jackman, T. E., Advanced Metallization and Pr Cessing for Semiconductor Devices and Circuits - H, edited by Katz, A., Murarka, S. P., Nissim, Y. I., and Harper, J. M. E. (Mater. Res. Soc. Proc. 260, Pittsburgh, PA 1992) pp. 857861.Google Scholar
10. Hong, Y., Wang, Z., Aldrich, D., Sayers, D., and Memanich, R. J., (to be published).Google Scholar
11. Ottaviani, G., Tu, K. N., Psaras, P., Nobili, C., J. Appl. Phys. 62, 2290 (1987).Google Scholar
12. Hove, L. Van Den, Wolters, R., Maex, K., Dekeersmaecker, R., and Delerke, G., J. Vac. Sci Technol., B 4 1358 (1986).CrossRefGoogle Scholar
13. Deboer, F. R., Boom, R., Mattens, W. C., Miedema, A. R., and Niessen, A. K., Eds., Cohesion in Metals: Transition Metal Alloys (North Holland, Amsterdam, 1988).Google Scholar