Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-18T10:43:32.345Z Has data issue: false hasContentIssue false

Phase Diagram Studies in the SrO-CuO-TiO2 System; Applications to YBCO Coated Conductors

Published online by Cambridge University Press:  18 March 2011

A. Ayala
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 U.S.A.
T. G. Holesinger
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 U.S.A.
E. J. Peterson
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 U.S.A.
M. Archuleta
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 U.S.A.
Get access

Abstract

SrTiO3 (STO) is a potential buffer layer material for use in YBa2Cu3Oy (YBCO) coated conductors based on the IBAD MgO process. However, the interactions with YBCO are not yet fully understood and little information exists in the way of phase diagrams. With this in mind, the tie-line between STO and SrCuO2 in the pseudo-ternary system SrO-CuO-TiO2 was investigated. Phase assemblages and compositions were determined by x-ray diffraction and electron microscopy in the temperature range of 1000°C to 1100°C in oxygen partial pressures of 1%, 10%, and 100%. Preliminary results showed that an appreciable amount of copper substitutes into the STO crystal structure. Conversely, Ti substitution into the SrCuO2 phase was not detected.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, Y., Tanabe, N, Kohno, O., and Ikeno, Y., Applied Physics Letters 60 (6), 769771 (1992).Google Scholar
2. Wu, X.D., Foltyn, S.R., Arendt, P., Townsend, J., Adams, C., Campbell, I.H., Tiwari, P., Coulter, Y., and Peterson, D.E., Applied Physics Letters 65 (15), 19611963 (1994).Google Scholar
3. Goyal, A., Norton, D.P., Budai, J.D., Paranthaman, M., Specht, E.D., Kroeger, D.M., Christen, D.K., He, Q., Saffian, B., List, F.A., Lee, D.F., Martin, P.M., Klabunde, C.E., Hartfield, E., and Sikka, V.K., Applied Physics Letters 69 (12), 17951797 (1996).Google Scholar
4. Arendt, P.N., Foltyn, S.R., Groves, J.R., Depaula, R.F., Dowden, P.C., Roper, J.M., and Coulter, J.Y., Applied Superconductivity 4 (10–11), 429434 (1996).Google Scholar
5. Wang, C.P., Do, K.B., Beasley, M.R., Geballe, T.H., and Hammond, R.H., Applied Physics Letters 71, 29552957 (1997).Google Scholar
6. Groves, J.R., Arendt, P.N., Foltyn, S.R., DePaula, R.F., Peterson, E.J., Holesinger, T.G., Coulter, J.Y., Springer, R.W., Wang, C.P., and Hammond, R.H., IEEE Transactions on Applied Superconductivity 9 (2), 19641966 (1999).Google Scholar
7. Cliff, G. and Lorimer, G.W., Journal of Microscopy 103, 203 (1975).Google Scholar
8. Holesinger, T.G., Foltyn, S.R., Arendt, P.N., Jia, Q., Dowden, P.C., DePaula, R.F., and Groves, J.R., IEEE Transactions on Applied Superconductivity 11 (1), 33593364 (2001).Google Scholar