Hostname: page-component-68945f75b7-9klrw Total loading time: 0 Render date: 2024-08-05T10:39:03.306Z Has data issue: false hasContentIssue false

Phase Compositions and Elements Partitioning in Two-Phase Hosts for Immobilization of a Rare Earth-Actinide High-Level Waste Fraction

Published online by Cambridge University Press:  10 February 2011

S.V. Stefanovsky
Affiliation:
SIA Radon, 7th Rostovskii per., 2/14, Moscow119121 RUSSIA, itbstef@cityline.ru
S.V. Yudintsev
Affiliation:
Institute of Geology of Ore Deposits, Russian Academy of Sciences, Staromonetni 35, Moscow RUSSIA
B.S. Nikonov
Affiliation:
Institute of Geology of Ore Deposits, Russian Academy of Sciences, Staromonetni 35, Moscow RUSSIA
A.V. Ochkin
Affiliation:
D. Mendeleev University of Chemical Technology, Miusskaya, 9, Moscow RUSSIA
S.V. Chizhevskaya
Affiliation:
D. Mendeleev University of Chemical Technology, Miusskaya, 9, Moscow RUSSIA
N.E. Cherniavskaya
Affiliation:
SIA Radon, 7th Rostovskii per., 2/14, Moscow119121 RUSSIA, itbstef@cityline.ru
Get access

Abstract

In two-phase matrices based on pyrochlore-oxide, perovskite-oxide, and pyrochlore-zirconolite assemblages as much as 40 wt.% of the product can consist of an incorporated rare earth - actinide fraction of high level wastes (HLW). In zirconolite, with a nominal stoichiometry of AVIIIBVICV-VI2O7 the actmide and rare earth ions occupy VIII- and VII-fold coordinated sites. Charge compensation is achieved by replacement of Ti4+ with lower valence ions such as Al3+, Fe2+/3+. Mg2+, etc, that have similar radii. The highest lanthanide incorporation (45 wt.% σREE2O3) was exhibited by a calcium free zirconolite containing 8 wt.% A12O3 or 0.7 formula units (f.u.). In pyrochlore (AVIII2BVI2O7−x) actinides and rare earths occupy A-sites. Their incorporation does not require simultaneous ionic substitution in the B-sites, for example Al3+ or Fe 2+/3+ for TI4+, to achieve charge compensation; this simplifies the required composition of the system. Pyrochlore ceramics are suitable for immobilization of wastes with relative elevated actinide content. For a high zirconia, waste ZrO2-based or two-phase pyrochlore-dioxide, perovskite-dioxide or pyrochlore-zirconolite ceramics are preferable. All these wasteforms may be produced via melting

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Drozhko, E.G., Suslov, A.P., Fetisov, V.I. in High Level Radioactive Waste and Spent Fuel Management (ASME, 1993), 2, p. 1720.Google Scholar
2 Romanovski, V.N., Smirnov, I.V., Shadrin, A.Yu. in Spectrum '98, Proc. Int. Conf. (ANS, La Grange Park, 1998), 1, p. 576580.Google Scholar
3 Sombret, C.G. in The Geological Disposal of High Level Radioactive Wastes, (Theoph. Pub]., Athens, 1987), p. 69159.Google Scholar
4 Heimann, R.B., Vandergraaf, T.T., J. Mat. Sci. Lett., 7, 583 (1988).Google Scholar
5 Vance, E.R., Begg, B.D., Day, R.A., Ball, C.J., Mat. Res. Soc. Symp. Proc. 353, 767 (1995).Google Scholar
6 Ewing, R.C., Weber, W.J., Clinard, F.W., Progr. Nucl. Energy. 29, 63 (1995).Google Scholar
7 Maddrell, E.R., Mat. Res. Soc. Symp. Proc. 412, 353 (1996).Google Scholar
8 Yokoi, H., Matsui, T., Ohno, H., Kobayashi, K., Mat. Res. Soc. Symp. Proc. 353, 783 (1995).Google Scholar
9 Fielding, P.E., White, T.J., J. Mater. Res. 2, 387 (1987).Google Scholar
10 Shoup, S.S., Bamberger, C.E., Mat. Res. Soc. Symp. Proc. 412, 379 (1996).Google Scholar
11 Swenson, D., Nieh, T.G., Fournelle, J.H., Mat. Res.Soc. Symp. Proc. 412, 337 (1996).Google Scholar
12 Knyazev, O.A., Stefanovsky, S.V., Yudintsev, S.V. et al. , Mat. Res. Soc. Symp. Proc. 465, 401 (1997).Google Scholar
13 Yudintsev, S.V., Omelianenko, B.I., Stefanovsky, S.V. et al. , J. Adv. Mat. 1, 91 (1998).Google Scholar
14 Stefanovsky, S.V., Yudintsev, S.V., Ochkin, A.V. et al. , Mat. Res. Soc. Symp. Proc. 506, 261 (1998).Google Scholar
15 Vance, E.R., Agrawal, D.K., Nucl. Chem. Waste Manag. 3, 229 (1982).Google Scholar
16 Kesson, S.E., Sinclair, W.J., Ringwood, A.E., Nucl. Chem. Waste Manag. 4, 259 (1984).Google Scholar
17 Gould, T., Myers, B., Gray, L., Edmunds, T., in Proc. 3-rd Top. Meet. on DOE Spent Nuclear Fuel and Fissile Materials Management (Charleston, SC, 1998), p. 366373.Google Scholar
18 White, T.J., Amer. Mineral. 69, 1156 (1984).Google Scholar
19 Giere, R., Williams, C.N., Lumpkin, G.R., Schweiz. Miner. Petrol. Mitt. 78, 433 (1998).Google Scholar
20 Advocat, T., Fillet, C., Marillet, J., Leturcq, G. et al. , Mat. Res. Soc. Symp. Proc. 506, 55 (1998).Google Scholar
21 Jostsons, A., Vance, E.R., Day, R.A. in Spectrum '96, Proc. Int. Conf. (ANS, La Grange Park, 1996), p. 20322039.Google Scholar