Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-10T22:51:14.400Z Has data issue: false hasContentIssue false

A Perspective on MoSi2 Based Composites

Published online by Cambridge University Press:  15 February 2011

J. J. Petrovic
Affiliation:
Materials Science and Technology Division, Group MST-4, Los Alamos National Laboratory, Los Alamos, NM 87545
A. K. Vasudevan
Affiliation:
Office of Naval Research, Code 1222, 800 North Quincy Street, Arlington, VA 22217-5000
Get access

Abstract

MoSi2 based composites represent an important new class of “high temperature structural silicides”, with significant potential for elevated temperature structural applications in the range of 1200–1600 °C in oxidizing and aggressive environments. The properties of MoSi2 which make it an attractive matrix for high temperature composites are described and the developmental history of these materials traced. Latest results on elevated temperature creep resistance, low temperature fracture toughness, and composite oxidation behavior are summarized. Important avenues for future MoSi2 based composite development are suggested.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vasudevan, A.K. and Petrovic, J.J., “A Comparative Overview of Molybdenum Disilicide Composites”, in High Temperature Structural Silicides, Eds. Vasudevan, A.K. and Petrovic, J.J. (Elsevier Science Publishers, Amsterdam, 1992).Google Scholar
2. Hoenigschmid, O., Monatsh. Chem., 28, 1017 (1907).Google Scholar
3. Kanthal, Swedish Patent No. 155836, 1953.Google Scholar
4. Maxwell, W.A., “Some Stress-Rupture & Creep Properties of Molybdenum Disilicide in the Range of 1600–2000 F”, NACA Research Memorandum NACA RM E52DO9, June 1952.Google Scholar
5. Fitzer, E., Rubisch, O., Schlichting, J., and Sewdas, I., Spial Ceramics, Vol.6, 1973.Google Scholar
6. Schlichting, J., High Temp.-High Press., 10, 241 (1978).Google Scholar
7. Fitzer, E. and Remmele, W., Proceedings 5th International Conference on Composite Materials. ICCM-V, Eds. Harrigan, W.C. Jr., Strife, J., and Dhingra, A.K. (AIME Publications, Warrendale, PA, 1985), p. 515.Google Scholar
8. Gac, F.D. and Petrovic, J.J., J. Amer. Ceram. Soc., 6, C200 (1985).Google Scholar
9. Carter, D.H., M.S. Thesis, MIT, 1988; D.H. Carter, W.S. Gibbs, and J.J. Petrovic, Proceedings 3rd International Symposium on Ceramic Materials & Components for Engines, (The American Ceramic Society, Inc., Westerville, OH, 1989), p.977.Google Scholar
10. Meschter, P.J. and Schwartz, D.S., Journal of Metals, November 1989, 52.Google Scholar
11. Petrovic, J.J., Honnell, R.E., and Vasudevan, A.K., Mat. Res. Soc. Symp. Proc., 194, 123 (1990).Google Scholar
12. Unal, O., Petrovic, J.J., Carter, D.H., and Mitchell, T.E., J. Amer. Ceram. Soc., 73, 1752 (1990).Google Scholar
13. Umakoshi, Y., Sakagami, T., Hirano, T., and Yamane, T., Acta Metall. Mater., 38, 909 (1990).Google Scholar
14. Aikin, R.M. Jr., Scripta Met., M, 1025 (1992).Google Scholar
15. Wade, R.J. and Petrovic, J.J., “Fracture Modes in MoSi2”, J. Amer. Ceram. Soc., in press.Google Scholar
16. Berztiss, D.A., Cerchiara, R.R., Gulbransen, E.A., Pettit, F.S., and Meier, G.H., “Oxidation of MoSi2 and Comparison to Other Silicide Materials”, in High Temperature Structural Silicides, Eds. Vasudevan, A.K. and Petrovic, J.J. (Elsevier Science Publishers, Amsterdam, 1992).Google Scholar
17. Petrovic, J.J. and Honnell, R.E., Ceram. Eng. Sci. Proc., 11, 734 (1990).Google Scholar
18. Boettinger, W.J., Perepezko, J.H., and Frankwicz, P.S., “Application of Ternary Phase Diagrams to the Development of MoSi2-Based Materials”, in High Temperature Structural Silicides, Eds. Vasudevan, A.K. and Petrovic, J.J. (Elsevier Science Publishers, Amsterdam, 1992).Google Scholar
19. Sadananda, K., Feng, C.R., Jones, H., and Petrovic, J., “Creep of Molybdenum Disilicide Composites”, in High Temperature Structural Silicides, Eds. Vasudevan, A.K. and Petrovic, J.J. (Elsevier Science Publishers, Amsterdam, 1992).Google Scholar
20. Bose, S., “Engineering Aspects of Creep Deformation of Molybdenum Disilicide”, in High Temperature Structural Silicides, Eds. Vasudevan, A.K. and Petrovic, J.J. (Elsevier Science Publishers, Amsterdam, 1992).Google Scholar
21. Wiederhorn, S.M., Gettings, R.J., Roberts, D.E., Ostertag, C., and Petrovic, J.J., “Tensile Creep of Silicide Composites”, in High Temperature Structural Silicides, Eds. Vasudevan, A.K. and Petrovic, J.J. (Elsevier Science Publishers, Amsterdam, 1992).Google Scholar
22. Bartlett, R.W., Gage, P.R., and Larssen, P.A., Trans. AIME, 230, 1528 (1964).Google Scholar
23. Kofstad, P., High Temperature Oxidation of Metals, (John Wiley & Sons, New York, 1966).Google Scholar
24. Evans, A.G., J. Amer. Ceram. Soc., 73, 187 (1990).Google Scholar
25. Maloney, M.J. and Hecht, R.J., “Development of Continuous Fiber Reinforced Molybdenum Disilicide Base Composites”, in High Temperature Structural Silicides, Eds. Vasudevan, A.K. and Petrovic, J.J. (Elsevier Science Publishers, Amsterdam, 1992).Google Scholar
26. Castro, R.G., Smith, R.W., Rollett, A.D., and Stanek, P.W., “Ductile Phase Toughening of Molybdenum Disilicide by Low Pressure Plasma Spraying”, in High Temperature Structural Silicides, Eds. Vasudevan, A.K. and Petrovic, J.J. (Elsevier Science Publishers, Amsterdam, 1992).Google Scholar
27. Petrovic, J.J., Bhattacharya, A.K., Honnell, R.E., Mitchell, T.E., Wade, R.K., and McClellan, K.J., “ZrO2 and ZrO2/SiC Particle Reinforced-MoSi2 Matrix Composites”, in High Temperature Structural Silicides, Eds. Vasudevan, A.K. and Petrovic, J.J. (Elsevier Science Publishers, Amsterdam, 1992).Google Scholar
28. Petrovic, J.J. and Honnell, R.E., in Ceramic Transactions. Volume 19, (The American Ceramic Society Inc., Westerville, Ohio, 1991), p. 817.Google Scholar
29. Bhattacharya, A.K. and Petrovic, J.J., J. Amer. Ceram. Soc., 74, 2700 (1991).Google Scholar
30. Worrell, W.L., University of Pennsylvania, private communication.Google Scholar
31. Becher, P.F., Hsueh, C-H, Angelini, P., and Tiegs, T.N., J. Amer. Ceram. Soc., 71, 1050 (1988).Google Scholar
32. Maloy, S., Heuer, A.H., Lewandowski, J., and Petrovic, J., J. Amer. Ceram. Soc., 74, 2704 (1991).Google Scholar
33. Maloy, S.A., Lewandowski, J.J., Heuer, A.H., and Petrovic, J.J., “Effects of Carbon Additions on High Temperature Mechanical Properties of Molybdenum Disilicide”, in High Temperature Structural Silicides, Eds. Vasudevan, A.K. and Petrovic, J.J. (Elsevier Science Publishers, Amsterdam, 1992).Google Scholar
34. Cook, J., Khan, A., Lee, E., and Mahapatra, R., “Oxidation of MoSi2 Based Composites”, in High Temperature Structural Silicides, Eds. Vasudevan, A.K. and Petrovic, J.J. (Elsevier Science Publishers, Amsterdam, 1992).Google Scholar