Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T12:19:04.562Z Has data issue: false hasContentIssue false

Persistent Photocurrent in InP Nanowires Heteroepitaxially Bridged Between Single Crystal Si Surfaces

Published online by Cambridge University Press:  01 February 2011

Ataur Sarkar
Affiliation:
mrsarkar@ucdavis.edu, University of California, Electrical and Computer Engineering, One Shields Avenue, Davis, CA, 95616, United States, 530-754-2257
M. Saif Islam
Affiliation:
saif@ece.ucdavis.edu, University of California, Electrical and Computer Engineering, One Shields Avenue, Davis, CA, 95616, United States
Sungsoo Yi
Affiliation:
sungsoo.yi@philips.com, Currently at Advanced Laboratories, Philips Lumileds Lighting Company, Molecular Technology Laboratory, Agilent Technologies, San Jose, CA, 95131, United States
A. Alec Talin
Affiliation:
aatalin@sandia.gov, Sandia National Laboratories, P.O. Box 969, Livermore, CA, 94551, United States
Get access

Abstract

Room temperature photoelectrical characterization with 325-nm ultraviolet and 633-nm visible laser excitations is performed on lateral p-type InP nanowires bridged between vertically oriented heavily p-doped single crystal silicon electrodes. Experimental results under 5 V bias demonstrate persistent photoconductivity through a slow decay of excess photocurrent with relaxation times ∼110 s and ∼50 s for the UV and visible laser illuminations, respectively. Persistent photocurrent originates from the long recombination time due to carrier trapping in vacancies, defect centers, and surface states in the InP nanowires. The study opens a new understanding of trap physics of nanowire heterostructures, a critical investigation for applications of these materials in photonic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Sarkar, A., VJ, L., Kobayashi, N. P., Straznicky, J., Wang, S.-Y., Williams, R. S., and Islam, M. S., “Persistent photoconductivity of InP nanowire photoconductors bridged between amorphous silicon electrodes,” Proc. of SPIE, vol. 6768, pp. 67680P–1, 2007.Google Scholar
[2] Beadie, G., Rabinovich, W. S., Wickenden, A. E., Koleske, D. D., Binari, S. C., and Freitas, J. A., “Persistent photoconductivity in n-type GaN,” Applied Physics Letters, vol. 71, pp. 10921094, Aug 25 1997.Google Scholar
[3] Bonfiglio, A., Traetta, G., Lomascolo, M., Passaseo, A., and Cingolani, R., “Origin of persistent photocurrent in GaN/AlGaN multiquantum wells,” Journal of Applied Physics, vol. 89, pp. 57825784, May 15 2001.Google Scholar
[4] Chen, H. M., Chen, Y. F., Lee, M. C., and Feng, M. S., “Persistent photoconductivity in n-type GaN,” Journal of Applied Phsics, vol. 82, pp. 899901, Jul 15 1997.Google Scholar
[5] Hirsch, M. T., Wolk, J. A., Walukiewicz, W., and Haller, E. E., “Persistent photoconductivity in n-type GaN,” Applied Physics Letters, vol. 71, pp. 10981100, Aug 25 1997.Google Scholar
[6] Hung, H., Chen, C. H., Chang, S. J., Kuan, H., Lin, R. M., and Liu, C. H., “Kinetics of persistent photoconductivity in InGaN epitaxial films grown by MOCVD,” Journal of Crystal Growth, vol. 298, pp. 246250, Jan 2007.Google Scholar
[7] Lampert, M. A. and Mark, P., Current Injection in Solids: Academic Press Inc., USA, 1970.Google Scholar
[8] Cai, S., Parish, G., Dell, J. M., and Nener, B. D., “Contribution of hole trap to persistent photoconductivity in n-type GaN,” Journal of Applied Physics, vol. 96, pp. 10191023, Jul 15 2004.Google Scholar
[9] Chung, S. J., Karunagaran, B., Velumani, S., Hong, C. H., Lee, H. J., and Suh, E. K., “Photoluminescence and persistent photoconductivity of AlxGa1-xN/GaN heterostructures,” Applied Physics A-Materials Science & Processing, vol. 86, pp. 521524, Mar 2007.Google Scholar
[10] Li, J. Z., Lin, J. Y., Jiang, H. X., Salvador, A., Botchkarev, A., and Morkoc, H., “Nature of Mg impurities in GaN,” Applied Physics Letters, vol. 69, pp. 14741476, Sep 2 1996.Google Scholar
[11] Qiu, C. H. and Pankove, J. I., “Deep levels and persistent photoconductivity in GaN thin films,” Applied Physics Letters, vol. 70, pp. 19831985, Apr 14 1997.Google Scholar
[12] Calarco, R., Marso, M., Richter, T., Aykanat, A. I., Meijers, R., Hart, A. V., Stoica, T., and Luth, H., “Size-dependent photoconductivity in MBE-grown GaN-nanowires,” Nano Letters, vol. 5, pp. 981984, May 2005.Google Scholar
[13] Islam, M. S., Sharma, S., Kamins, T. I., and Williams, R. S., “A novel interconnection technique for manufacturing nanowire devices,” Applied Physics A-Materials Science & Processing, vol. 80, pp. 11331140, Mar 2005.Google Scholar
[14] Sarkar, A., Kimukin, I., Edgar, C. W., Yi, S., and Islam, M. S., “Heteroepitaxial growth dynamics of InP nanowires on silicon,” Journal of Nanophotonics, vol. 2, pp. 115, Feb 2008.Google Scholar
[15] Polenta, L., Rossi, M., Cavallini, A., Calarco, R., Marso, M., Meijers, R., Richter, T., Stoica, T., and Luth, H., “Investigation on localized states in GaN nanowires,” ACS Nano, vol. 2, pp. 287292, Feb 2008.Google Scholar