Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-01T18:28:25.107Z Has data issue: false hasContentIssue false

Persistent Photoconductivity in a High Mobility two Dimensional Electron Gas in an AlGaN/GaN Heterostructure

Published online by Cambridge University Press:  17 March 2011

S. Elhamri
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433-7707
A. Saxler
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433-7707
D. Cull
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433-7707
W. C. Mitchel
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433-7707
C.R. Elsass
Affiliation:
Materials Department
I.P. Smorchkova
Affiliation:
Electrical and Computer Engineering Department
B. Heying
Affiliation:
Materials Department
C. Poblenz
Affiliation:
Materials Department
P. Fini
Affiliation:
Materials Department
S. Keller
Affiliation:
Electrical and Computer Engineering Department
P.M. Petroff
Affiliation:
Materials Department Electrical and Computer Engineering Department
S.P. DenBaars
Affiliation:
Materials Department Electrical and Computer Engineering Department
U.K. Mishra
Affiliation:
Electrical and Computer Engineering Department
J.S. Speck
Affiliation:
Materials Department
Get access

Abstract

Temperature-variable Hall and Shubnikov- de Haas effects have been used to study persistent photoconductivity in an AlGaN/GaN heterojunction. At liquid helium temperatures, the mobility in this structure was close to 55000 cm2/Vs. A blue GaN-based light emitting diode was used to illuminate the sample. This illumination resulted in a persistent photocurrent, which allowed us to vary the carrier density and study the dependence of the mobility on the carrier concentration. Exposing the sample to this light resulted in an increase in the carrier density. For small increases in the density, the mobility also increased. However, unlike in previous reports by other authors, extended illumination resulted in an increase in the density and a decrease in the mobility. The initial increase in the mobility is attributed to increased screening due to the increase in the carrier density, while the decrease in the mobility may be attributed to alloy scattering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Jain, S. C., Willander, M., Narayan, J., Overstraeten, R. Van, J. Appl. Phys. 87, 965(2000)Google Scholar
2 McCarthy, L., Kozodoy, P., Rodwell, M., DenBaars, S., and Mishra, U., Compound Semiconductor 4(8), 16 (1998).Google Scholar
3 Nakamura, S., Seno, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Appl. Phys. Lett. 69, 4056 (1996).Google Scholar
4 Razeghi, M. and Rogalski, A., J. Appl. Phys. 79, 7433 (1996).Google Scholar
5 Nakamura, S., Seno, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Appl. Phys. Lett. 69, 4056 (1996).Google Scholar
6 Gaska, R., Shur, M. S., Fjeldly, T. A., Bykhovski, A. D., J.Appl.Phys. 85, 3009(1999).Google Scholar
7 Antoszewski, J., Gracey, M., Dell, J. M., Faraone, L., Fisher, T. A., Parish, G., Wu, Y. F., Mishra, U. K., J. Appl. Phys. 87,3900(2000).Google Scholar
8 Hsu, L., Walukiewicz, W., Phys. Rev. B. 56, 1520(1997).Google Scholar
9 Li, G., Chua, S. J., Wang, W., Solid. State. Communications 111, 659(1999).Google Scholar
10 Li, J. Z., Lin, J.Y., Jiang, H. X., Khan, M. Asif, Chen, Q., J. Appl. Phys. 82, 1227(1997).Google Scholar
11 Elhamri, S., Ahoujja, M., Newrock, R. S., Mast, D. B., Herbert, S. T., Mitchel, W. C., Razeghi, Manijeh, Phys. Rev. B. 54,10688(1996).Google Scholar
12 Smorchkova, I. P., Elsass, C. R., Ibbetson, J. P., R.Vetury, Heying, B., Fini, P., Haus, E., DenBaars, S. P., Speck, J. S., Mishra, U. K., J. Appl. Phys. 86, 4520(1999)Google Scholar
13 Coleridge, P. T., Stoner, R., Fletcher, R., Phys. Rev. B 39, 1120 (1989)Google Scholar
14 Coleridge, P.T., Hayne, M., Zawadzki, P., Sachradja, A.S., Surf. Sci. 361/362, 560(1995);Google Scholar
15 Mani, R. G., Anderson, J. P., Phys. Rev. B37, 4299(1988); J. P. Harrang, R. J. Higgins, R. K. Goodall, P. R. Jay, M. Laviron, P. Delescluse, Phys. Rev. B32, 8126(1985); S. Das Sarma, Frank Stern, Phys. Rev. B32, 8442(1988).Google Scholar