Hostname: page-component-6d856f89d9-sp8b6 Total loading time: 0 Render date: 2024-07-16T07:25:33.174Z Has data issue: false hasContentIssue false

Permittivity and Microstructure of (Ba,Sr)TiO3 Films: Temperature and Electric Field Response

Published online by Cambridge University Press:  10 February 2011

Yu.A. Boikov
Affiliation:
Physics and Engineering Physics, Chalmers University of Technology & Göteborg University, S-41296 Göteborg, Sweden, boikov@fy.chalmers.se Ioffe Physico-Technical Institute Russian Academy of Sciences, 194021 St.Petersburg, Russia
T. Claeson
Affiliation:
Physics and Engineering Physics, Chalmers University of Technology & Göteborg University, S-41296 Göteborg, Sweden, boikov@fy.chalmers.se
Z. Ivanov
Affiliation:
Physics and Engineering Physics, Chalmers University of Technology & Göteborg University, S-41296 Göteborg, Sweden, boikov@fy.chalmers.se
E. Olsson
Affiliation:
Analytical Materials Physics, The Ångström Laboratory, Uppsala University, S-75121 Uppsala, Sweden
Get access

Abstract

Epitaxial heterostructures (001)(Y,Nd)Ba2Cu3O7-δ∥(100)SrTiO3∥(001)(Nd,Y)Ba2Cu3O7-δ,(100)SrRuO3∥(100)Ba0.8Sr0.2TiO3∥(100)SrRuO3, (100)SrRuO3∥(100)SrTiO3∥(100)SrRuO3 and (100)SrTiO3∥(001)YBa2Cu3O7-δ have been grown by laser ablation. There was only a small difference of the dielectric permittivity, in the temperature range 180-300K, between a bulk single crystal and an epitaxial (100)SrTiO3 layer inserted between either high-Tc superconducting or SrRuO3 electrodes. At T<1 50K, on the other hand, the response of the dielectric permittivity of the SrTiO3 layer on temperature or electric field depended to a large extent upon the materials used as bottom and top electrodes in the heterostructures. The temperature dependence of the dielectric permittivity for the SrTiO3 layer in (100)SrRuO3∥(100)SrTiO3∥(100)SrRuO3 was well extrapolated by a Curie-Weiss relation in the range of T=80-300K, with about the same Curie constant (C0=7.5 × 104 K) and Curie temperature (TCurie=21K) as in a bulk single crystal. At temperatures higher the phase transition point (65 K), the electric field response of the permittivity of the SrTiO3 layer between high-TC superconducting or metallic oxide electrodes was well extrapolated by the same relation used for a bulk single crystal. The smallest loss factor, tanδ, was measured for the capacitance (100)SrRuO3∥(100)SrTiO3∥(100)SrRuO3 (T ≈ 50-300K, f=100kHz). The measured conductance G for the SrTiO3 layer in the (001)(Y,Nd)Ba2Cu3O7-δ heterostructure fitted well the relation InG∼-(ED/kT), with ED=0.08-0.09 eV in a temperature range close to 300K. Pronounced hysteresis was observed in the temperature dependence of the dielectric permittivity for the (100)Ba0.8Sr0.2TiO3 layer at temperatures close to the phase transition point, like in the case of a bulk single crystal. The permittivity of the (100)Ba0.8Sr0.2TiO3 layer decreased more than 50% when an electric field of 2.5×106V/m (T ≈ 300K, f=100 kHz ) was applied.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gergis, I.S., Cheung, J.T., Trinh, T.H., Sovero, E.A. and Kobrin, P.H., Appl.Phys.Lett. 60, p. 2026, (1992).10.1063/1.107132Google Scholar
2. Johnson, K.M., J.Appl.Phys. 33, p. 2826, (1962).10.1063/1.1702558Google Scholar
3. Gill, D.M., Block, B.A., Conrad, C.W., Wessels, B.W., Ho, S.T., Appl.Phys.Lett. 69, p. 2968, (1996).10.1063/1.117746Google Scholar
4. Hwang, C.S., Mater.Sci.Eng. B 56, p. 178, (1998). 24310.1016/S0921-5107(98)00233-5Google Scholar
5. Basceri, C., Streiffer, S.K., Kingon, A.I., and Waser, R., J.Appl.Phys. 82, p. 2497, (1997).10.1063/1.366062Google Scholar
6. Lee, J.J., Thio, C.L., and Desu, S.B., J.Appl.Phys. 78, p. 7073, (1995).Google Scholar
7. Boikov, Yu.A. and Claeson, T., J.Appl.Phys. 81, p. 3232, (1997).10.1063/1.364155Google Scholar
8. Boikov, Yu.A. and Claeson, T., Physica C, Submitted for publication.Google Scholar
9. Boikov, Yu.A., Danilov, V.A., Claeson, T., and Erts, D., Phys.Solid State 41, p. 355, (1999).10.1134/1.1130783Google Scholar
10. Boikov, Yu.A., Ivanov, Z.G., Kiselev, A.N., Olsson, E. and Claeson, T., J.Appl.Phys. 78, p. 4591, (1995).10.1063/1.359804Google Scholar
11. Tidjani, M.E., Gronsky, R., Kingston, J.J., Wellstood, F.C. and Clarke, J., Appl.Phys.Lett. 58, p.765, (1991).10.1063/1.104541Google Scholar
12. Hilton, A.D. and Ricketts, B.W., J.Phys.D: Appl.Phys. 29, p.1321, (1996).10.1088/0022-3727/29/5/028Google Scholar
13. Devonshire, A.F., Phil.Mag. 40, p. 1040, (1949).10.1080/14786444908561372Google Scholar
14. Merz, W.J., Phys.Rev. 91, p. 513, (1953).10.1103/PhysRev.91.513Google Scholar
15. Worlock, J.M. and Fleury, P.A., Phys.Rev.Lett. 19, p. 1176, (1967).10.1103/PhysRevLett.19.1176Google Scholar
16. Neville, R.C., Hoeneisen, B. and Mead, C.A., J.Appl.Phys. 43, p. 2124, (1972).10.1063/1.1661463Google Scholar
17. Boikov, Yu.A., Danilov, V.A., Carlsson, E., Erts, D. and Claeson, T., Physica B 262, p. 104, (1999).10.1016/S0921-4526(98)00662-0Google Scholar
18. Hou, S.Y., Kwo, J., Watts, R.K., Cheng, J.-Y., and Fork, D.K., Appl.Phys.Lett. 67, p. 1387, (1995).10.1063/1.115542Google Scholar
19. Rupprecht, G. and Bell, R.O., Phys.Rev. 135, p. A748, (1964).10.1103/PhysRev.135.A748Google Scholar
20. Boikov, Yu.A. and Claeson, T., Supercond.Sci.Technol. 12, p. 654, (1999).10.1088/0953-2048/12/10/302Google Scholar
21. Merz, W.J., Phys.Rew. 76, p.1221, (1949).10.1103/PhysRev.76.1221Google Scholar
22. Slater, J.C., Phys.Rew. 78, p. 748, (1950).10.1103/PhysRev.78.748Google Scholar
23. Rupprecht, G. and Bell, R.O., Phys.Rev. 125, p. 1915,(1962).10.1103/PhysRev.125.1915Google Scholar
24. Yeargan, J.R. and Taylor, H.L., J.Appl.Phys. 39, p. 5600, (1968).10.1063/1.1656022Google Scholar
25. Fossheim, K. and Berre, B., Phys.Rev. B 5, p. 3292, (1972).10.1103/PhysRevB.5.3292Google Scholar