Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-02T02:53:15.898Z Has data issue: false hasContentIssue false

Patterning of Single-Walled Carbon Nanotubes Using Wet Chemical Self-Assembling and Photolithographic Technique

Published online by Cambridge University Press:  26 February 2011

Myung-Sup Jung
Affiliation:
msjung22@samsung.com, Samsung Advanced Institute of Technology, Materials Center, P.O. Box 111, Suwon, Korea, 440-600, Korea, Republic of, 82-31-280-8264, 82-31-280-9349
Sung-Ouk Jung
Affiliation:
sungouk.jung@samsung.com, Samsung Advanced Institute of Technology, materials Center
Hee-Tae Jung
Affiliation:
heetae@kaist.ac.kr, korea Advanced Institute of Science & Technology, Department of Chemical and Biomolecular Engineering, Korea, Republic of
Do Yun Kim
Affiliation:
doyunkim@samsung.com, Samsung Advanced Institute of Technology, materials Center, Korea, Republic of
Seok Gwang Doo
Affiliation:
sgdoo@samsung.com, Samsung Advanced Institute of Technology, materials Center, Korea, Republic of
Get access

Abstract

Single-walled carbon nanotubes (SWNTs) have been chemically attached with high density onto a patterned substrate. To form the SWNT pattern, the substrate was treated with acid-labile group protected amine, and an amine prepattern was formed using a photolithographic process with a polymeric photo acid generator. The SWNT monolayer pattern was then formed through the amidation reaction between the carboxylic acid groups of carboxylated SWNTs (ca-SWNTs) and the prepatterned amino groups. A high-density multilayer was fabricated via further repeated reaction between the carboxylic acid groups of the ca-SWNTs and the amino groups of the linker with the aid of a condensation agent. Scanning electron microscopy results show that the patterned SWNT films have uniform coverage with high surface density.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ajayan, P. M., Chem. Rev. 99, 1787 (1999).Google Scholar
2 Ren, Z. F., Huang, Z. P., Wang, D. Z., Wen, J. G., Xu, J. W., Wang, J. H., Calvet, L. E., Chen, J., Klemic, J. F. and Reed, M. A., Appl. Phys. Lett. 75, 1086 (1999).Google Scholar
3 Chen, Q. and Dai, L., Appl. Phys. Lett. 76, 2719 (1999).Google Scholar
4 Huang, S., Mau, A. W. H., Turney, T. W., White, P. A. and Dai, L., J. Phys. Chem. B 104, 2193 (2000).Google Scholar
5 Huang, S. and Mau, A. H. W., Appl. Phys. Lett. 82, 796 (2003).Google Scholar
6 Burghard, M., Duesberg, G., Philipp, G., Murster, J. and Roth, S., Adv. Mater. 10, 584 (1998).Google Scholar
7 Shimoda, H., Oh, S. J., Geng, H. Z., Walker, R. J., Zhang, X. B., McNeil, L. E. and Zhou, O., Adv. Mater. 14, 899 (2002).Google Scholar
8 Liu, J., Casavant, M. J., Cox, M., Walters, D. A., Boul, P., Lu, W., Rimberg, A. J., Smith, K., Colbert, D. T., and Smally, R. E., Chem. Phys. Lett. 303, 125 (1999).Google Scholar
9 Oh, S. J., Cheng, Y., Zhang, J., Shimoda, H. and Zhou, O., Appl. Phys. Lett. 82, 2521 (2003).Google Scholar
10 Wu, B., Zhang, J., Wei, Z., Cai, S. and Liu, Z., J. Phys. Chem. B 105, 5075 (2001).Google Scholar
11 Rao, S. G., Huang, L., Setyawan, W. and Hong, S., Nature 425, 36 (2003).Google Scholar
12 Liu, J., Rinzler, A. G. R., Dai, H., Hafner, J. H., Bradly, R. K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C. B., Rodriguez-marcias, F., Shon, Y. S., Lee, T. R., Colbert, D. T. and Smally, R. E., Science 280, 1253 (1998).Google Scholar