Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T01:08:42.022Z Has data issue: false hasContentIssue false

Patterning of Silicide Layers by Local Oxidation

Published online by Cambridge University Press:  15 February 2011

M. Dolle
Affiliation:
Institut für Schicht- und Ionentechnik, KFA Jülich, D-52428 Jülich, Germany
S. Mantl
Affiliation:
Institut für Schicht- und Ionentechnik, KFA Jülich, D-52428 Jülich, Germany
M. Hacke
Affiliation:
Institut für Schicht- und Ionentechnik, KFA Jülich, D-52428 Jülich, Germany
S. T. Mesters
Affiliation:
Institut für Schicht- und Ionentechnik, KFA Jülich, D-52428 Jülich, Germany
H. L. Bay
Affiliation:
Institut für Schicht- und Ionentechnik, KFA Jülich, D-52428 Jülich, Germany
Get access

Abstract

A novel method for patterning of silicide layers based on local oxidation is presented. We investigated unifom and local oxidation of epitaxial CoSi2 layers on Si(100). During thermal oxidation of CoSi2 a SiO2 surface layer forms and the silicide layer moves deeper into the substrate. Single crystalline CoSi2 layers on Si(100) remain single crystalline even if they are shifted into the substrate several hundred nm. Local oxidation of such a silicide layer allows lateral patterning of the silicide. The oxidized regions of the silicide layer are pushed inwards and separate from the surface layer at a critical oxidation time. This allows the formation of buried patterned silicides or metallized mesa structures. The technique seems to be also applicable for polycrystalline silicides.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Maex, K., Mater. Sci. Eng. Rep. R11, 53 (1993)Google Scholar
2. Harper, J. M. E., Motakef, S. and Moy, D., Appl. Phys. Lett. 60, 1196 (1992)Google Scholar
3. Hong, Q. Z. and Harper, J. M. E., J. Appl. Phys. 71, 4527 (1992)Google Scholar
4. Hedlund, C., Carlsson, P., Blom, H.-O.. Berg, S. and Karardjiev, I. V., J. Vac. Sci. Technol. A 12, 1542 (1994)Google Scholar
5. Mantl, S., Dolle, M., Mesters, St., Fichtner, P. F. P. and Bay, H. L., Appl. Phys. Lett 67(23) (1995) in pressGoogle Scholar
6. Strydom, W. J., Lombaard, J. C. and Pretorius, R., Thin Solid Films 131, 215 (1985)Google Scholar
7. Jiang, H., Peterson, C. S. and Nicolet, M.-A., Thin Solid Films 140, 115 (1986)Google Scholar
8. Huang, G. J. and Chen, L. J., J. Appl. Phys. 76, 865 (1992)Google Scholar
9. Wolf, S., Solid state Technol. 35, 53 (1992)Google Scholar
10. Mantl, S. and Bay, H. L., Appl. Phys. Lett. 61, 267 (1992)Google Scholar
11. Bartur, M. and Nicolet, M.-A., J. Electron. Mat. 13 (1),81 (1984)Google Scholar
12. De Wolf, I., Vanhellemont, J., Romano-Rodriquez, A., Norström, H. and Maes, H. E.,Google Scholar