Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T12:37:39.868Z Has data issue: false hasContentIssue false

Passivation of Silicon Surfaces by Treatment in Water at 110°C

Published online by Cambridge University Press:  01 June 2015

Tomohiko Nakamura
Affiliation:
Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
Toshiyuki Sameshima
Affiliation:
Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
Masahiko Hasumi
Affiliation:
Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
Tomohisa Mizuno
Affiliation:
Kanagawa University, Kanagawa, 259-1293, Japan
Get access

Abstract

We report effective passivation of silicon surfaces by heating single crystalline silicon substrates in liquid water at 110°C for 1 h. High values of photo-induced effective minority carrier lifetime τeff in the range from 1.9x10-4 to 1.8x10-3 s were obtained for the n-type samples with resistivity in the range from 1.7 to 18.1 Ωcm. τeff ranged from 8.3x10-4 to 3.1x10-3 s and from 1.2x10-4 to 6.0x10-4 s over the area of 4 inch sized 17.0 Ωcm n- and 15.0 Ωcm p-type samples, respectively. The heat treatment in liquid water at 110°C for 1 h resulted in low surface recombination velocities ranging from 7 to 34 cm/s and from 49 to 250 cm/s for those 4 inch sized n- and p-type samples, respectively. The thickness of the passivation layer was estimated to be approximate only 0.7 nm. Metal-insulator-semiconductor type solar cell was demonstrated with Al and Au metal formation on the passivated surface. Rectified current voltage and solar cell characteristics were observed. Open circuit voltage of 0.47 V was obtained under AM 1.5 light illumination at 100 mW/cm2.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sze, S. M., Semiconductor Devices (Wiley, New York, 1985) Chap 7.Google Scholar
Webster, E. A. G., Grant, L. A., Henderson, R. K., IEEE Trans. Electron Devices 60, 1188 (2013).CrossRefGoogle Scholar
Bohndiek, S. E., Arvanitis, C. D., Royle, G. J., Clark, A. T., Crooks, J. P., Prydderch, M. L., Turchetta, R., Blue, A., O'Shea, V., and Speller, R. D., Optical Engineering, 46, 124003 (2007).CrossRefGoogle Scholar
Webster, E. A. G., Grant, L. A., and Henderson, R. K., IEEE Electr. Dev. Lett. 33, 1589 (2012).CrossRefGoogle Scholar
Green, M. A., Prog. Photovoltaics 17, 183 (2009).CrossRefGoogle Scholar
Green, M. A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E. D., Prog. Photovoltaics 20, 12 (2011).CrossRefGoogle Scholar
Zhao, J., Wang, A., Green, M. A., Ferrazza, F., Appl. Physi. Lett. 73, 1991 (1998).CrossRefGoogle Scholar
Sopori, B. L.: Sol. Energy Mater. Sol. Cells 41–42 (1996) 159.CrossRefGoogle Scholar
Wu, I.-W., Lewis, A. G., Hung, T.-Y., and Chiang, A.: IEEE Electron Device Lett. 10 (1989) 123.CrossRefGoogle Scholar
Larionova, Yevgeniya, Mertens, Verena, Harder, Nils-Peter, and Brendel, Rolf, Appl. Phys. Lett. 96, 032105 (2010).CrossRefGoogle Scholar
Takenezawa, J., Hasumi, M., Sameshima, T., Koida, T., Kaneko, T., Karasawa, M., and Kondo, M., J. of Non-Crystalline Solids 358 (2012) 22852288.CrossRefGoogle Scholar
Sameshima, T., Satoh, M., Jpn. J. Appl. Phys. 36 (1997) L687.CrossRefGoogle Scholar
Sameshima, T., Kogure, K. and Hasumi, M., Jpn. J.Appl. Phys. 49 110205 (2010).CrossRefGoogle Scholar
Sameshima, T., Hayasaka, H., and Haba, T., Jpn. J. Appl. Phys. 48, 021204 (2009).CrossRefGoogle Scholar
Sameshima, T., Nagao, T., Yoshidomi, S., Kogure, K., and Hasumi, M., Jpn. J. Appl. Phys. 50, 03CA02 (2011).CrossRefGoogle Scholar
Sameshima, T., Ebina, R., Betsuin, K., Takiguchi, Y., and Hasumi, M., Jpn. J. Appl. Phys. 52, 011801–1 (2013).CrossRefGoogle Scholar
Groove, A. S.: Physics and Technology of Semiconductor Devices (Wiley, New York, 1967) Chap. 5.Google Scholar