Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-28T04:51:27.342Z Has data issue: false hasContentIssue false

Particle size and density control in magnetic polymer nanocomposites

Published online by Cambridge University Press:  01 February 2011

Angel Millan
Affiliation:
Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Facultad de Ciencias, Pza. San Francisco s/n, 50009 Zaragoza, Spain
Fernando Palacio
Affiliation:
Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Facultad de Ciencias, Pza. San Francisco s/n, 50009 Zaragoza, Spain
Andrea Falqui
Affiliation:
CEMES-CNRS, 29 rue Jeanne Marvig, F-31055 Toulouse Cedex
Snoeck Etienne
Affiliation:
CEMES-CNRS, 29 rue Jeanne Marvig, F-31055 Toulouse Cedex
Virginie Serin
Affiliation:
CEMES-CNRS, 29 rue Jeanne Marvig, F-31055 Toulouse Cedex
Get access

Abstract

Magnetic nanocomposites formed by metal oxide nanoparticles and organic polymers can be produced from a polymer-metal ion complex material by a soft thermal treatment. With only slight variations in the preparation procedure it is possible to obtain: 1) different iron oxide phases, e.g., hematite (antiferromagnetic), goethite and akaganeite (both canted antiferromagnets), and maghemite (ferrimagnetic); 2) nanocomposites with a different particle size, in a range from 2 nm to 20 nm; and 3) different particle density. In this contribution the preparation and properties of maghemite nanoparticles in polyvinyl pyridine composites are reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1(a) Volokitin, Y., Sinzig, J., Dejongh, L. J., Schmid, G., Vargaftik, M. N. and Moiseev, I. I., Nature 384, 621 (1996).10.1038/384621a0Google Scholar
(b) Bilas, M. L., Chatelain, A., Heer, W. A. de, Science 265, 1682 (1994).10.1126/science.265.5179.1682Google Scholar
2 Awschalom, D. and DiVicenzo, D., Phys. Today 48, 43 (1995).10.1063/1.881448Google Scholar
3 Bogdanov, A., Weissleder, R., Trends Biotechnol. 5, 16 (1998).Google Scholar
4 Massover, W. H., Micron 24, 389 (1993).10.1016/0968-4328(93)90005-LGoogle Scholar
5 Ziolo, R. F., Giannelis, E. P., Weinstein, B. A., O'Horo, M. P., Ganguli, B. N., Mehrotra, V., Russell, M. W. and Huffman, D. R., Science 257, 219 (1992).10.1126/science.257.5067.219Google Scholar
6 Sooklal, K., Hanus, L. H., Ploehn, H. J., Murphy, C. J., Adv. Mater. 10, 1083 (1998).10.1002/(SICI)1521-4095(199810)10:14<1083::AID-ADMA1083>3.0.CO;2-B3.0.CO;2-B>Google Scholar
7 Thurn-Albrecht, T., Schotter, J., Kastle, G.A., Emley, N., Shibauchi, T., Krusin-Elbaum, L., Guarini, K., Black, C.T., Tuominen, M.T., Russell, T.P., Science 290, 2126 (2000).10.1126/science.290.5499.2126Google Scholar
8 Palacio, F., Castro, C., Reyes, J., Sturgeon, G., Lázaro, F. J. and González-Calbet, J., in The physics and chemistry of finite systems: from clusters to crystals, Ed. Jena, P., Khana, S. N. and Ras, B. K., Kluwer Acad. Publ. NATO Series C 374, 793 (1992).10.1007/978-94-017-2645-0_106Google Scholar
9 Castro, C., Ramos, J., Millan, A., Gonzalez-Calbet, J., and Palacio, F., Chem. Mater. 12, 3681 (2001).10.1021/cm0011561Google Scholar
10 Millan, A. and Palacio, F., Appl. Organometallic Chem. 15, 396 (2001).10.1002/aoc.160Google Scholar
11 Dormán, J. L., Fiorani, D., Tronc, E., J. Magn. Magn. Mater. 202, 251 (1999).10.1016/S0304-8853(98)00627-1Google Scholar
12 Ramos, J., Millan, A. and Palacio, F., Polymer 41, 8461 (2000).10.1016/S0032-3861(00)00272-XGoogle Scholar