Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T16:15:37.587Z Has data issue: false hasContentIssue false

Particle Dynamic Simulation of Semi-Solid Metal Rheology

Published online by Cambridge University Press:  21 March 2011

Andrew M. Mullis*
Affiliation:
School of Materials, University of Leeds, Leeds LS2 9JT, UK.
Get access

Abstract

Models of semi-solid processing currently utilise constitutive equations to describe slurry rheology. However, using the techniques of molecular dynamics it may be possible to go beyond this approach to obtain direct relationships between applied shear rates, the resultant microstructural changes and rheology.

The results of a simple molecular dynamics simulation of semi-solid flow within a Couette rheometer are presented and compared with experimental data for the system Sn -15% Pb. We find that the model correctly predicts the apparent viscosity under steady state conditions, up to solid fractions of ≈ 40%.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Turng, L.S. & Wang, K.K., J. Mater. Sci. 26, 2173 (1991).Google Scholar
2. Hirai, M., Takebayashi, K. & Yoshikawa, Y., ISIJ Int. 33, 1182 (1993).Google Scholar
3. Kumar, P., Martin, C.L. & Brown, S., Acta Metall. mater. 11, 3595 (1994).Google Scholar
4. Suery, M., Martin, C.L. & Salvo, L., in -Proc. 4th Int. Conf. Semi-solid processing of alloys' (eds. Kirkwood, D.H. & Kapranos, P.), pp. 2129, Sheffield, UK, 1996.Google Scholar
5. Einstein, A., Ann. Physik 19, 289 (1906).Google Scholar
6. Katamis, T.Z. & Piccone, T.J., Mater. Sci. Eng. A131, 256 (1991).Google Scholar
7. Nan, W., Guangji, S. & Hanguo, Y., Mat. Trans. JIM 31, 715 (1990).Google Scholar
8. Derjaguin, B.V. & Landau, L., Acta Physiochem. URSS 14, 633 (1941).Google Scholar
9. Verwey, E.J.W. & Overbeek, J. Th. G., The theory of the stability of lyophobic colloids, Elsevier, Amsterdam, 1948.Google Scholar
10. Joly, P.A. & Mehrabian, R., J. Mater. Sci. 11, 1393 (1976).Google Scholar
11. Davis, I.L. & Carter, R.G., J. Appl. Phys. 67, 1022 (1990).Google Scholar
12 Stauffer, D., “An introduction to percolation theory”, Taylor & Francis, London, 1994.Google Scholar