Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-21T15:53:18.220Z Has data issue: false hasContentIssue false

Oxygen-Doped-Silicon/Silicon Heterointerfaces by Ion Implantation

Published online by Cambridge University Press:  25 February 2011

K. Srikanth
Affiliation:
Center for Electronic Materials & Processing, and Department of Engineering Science & Mechanics, The Pennsylvania State University, University Park, PA 16802
S. Ashok
Affiliation:
Center for Electronic Materials & Processing, and Department of Engineering Science & Mechanics, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

We have investigated oxygen ion implantation at substoichiometric doses for bandgap modification in silicon. Redistribution of the oxygen atoms during the high temperature anneal results in sharp interfaces aiding the formation of a heterojunction. A most interesting observation is the presence of donors in the vicinity of the implanted region, resulting in extensive counterdoping. Mesa type diodes on the implanted sample exhibit excellent rectification with a diode ideality factor n of 1.2 and a reverse saturation current density of 1 × 10−8 A/cm 2. The near surface region is shown to be crucial for achieving the high rectification behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Tabe, M., Takahashi, M., Ichimori, T. and Sakakibara, Y., Thin solid films, 184, p. 373, 1990.CrossRefGoogle Scholar
[2] Chaudhry, M. I. and wright, R. L., Appl. Phys. Lett., 59(1), p. 51, 1991.CrossRefGoogle Scholar
[3] Yablonovitch, E. and Gmitter, T., IEEE Electron Device Letters, EDL–6, No.11, p.597 1985.CrossRefGoogle Scholar
[4] Fukami, A., Shoji, K., Nagano, T. and Yang, C. Y., Appl. Phys. Lett. 57(22), p.2345, 1990.CrossRefGoogle Scholar
[5] White, A. E., Short, K.T., Karen Maex, Hull, R., Hsieh, Y., Audet, S. A., Goossen, K.W., Jacobson, D. C. and Poate, J. M., Nucl. Inst. Meth. in Pys. Res. B59/60, p.693, 1991.CrossRefGoogle Scholar
[6] Blaha, R. E., and Fahrner, W. R., J. Electrochem. Soc. 123, p.515 (1976)CrossRefGoogle Scholar
[7] Takahashi, M., Tabe, M., and Sakakibara, Y., IEEE Electron Device Lett., EDL–8, p.475 1987.CrossRefGoogle Scholar
[8] Nguyen, N. V., Chapter 5, Ph. D Thesis, The Pennsylvania State University, 1990.Google Scholar
[9] Vettesse, F., Sicart, J., Roberts, J. L., Cristoloveanu, S. and Bruel, M., Journal of Appl. Phys., 65(3), p. 1208, 1989.CrossRefGoogle Scholar