Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T23:32:19.659Z Has data issue: false hasContentIssue false

Oxygen related shallow acceptor in GaN

Published online by Cambridge University Press:  01 February 2011

B. Monemar
Affiliation:
Department of Physics and Measurement Technology, Linköping University, S-581 83 Linköping, Sweden
P. P. Paskov
Affiliation:
Department of Physics and Measurement Technology, Linköping University, S-581 83 Linköping, Sweden
F. Tuomisto
Affiliation:
Laboratory of Physics, Helsinki University of Technology, P. O. Box 1100, HUT 02015, Finland
K. Saarinen
Affiliation:
Laboratory of Physics, Helsinki University of Technology, P. O. Box 1100, HUT 02015, Finland
M. Iwaya
Affiliation:
Department of Electrical and Electronic Engineering, Meijo University, 1–501 Shiogamaguchi, Tempaku-ku, Nagoya 468, Japan
S. Kamiyama
Affiliation:
Department of Electrical and Electronic Engineering, Meijo University, 1–501 Shiogamaguchi, Tempaku-ku, Nagoya 468, Japan
H. Amano
Affiliation:
Department of Electrical and Electronic Engineering, Meijo University, 1–501 Shiogamaguchi, Tempaku-ku, Nagoya 468, Japan
I. Akasaki
Affiliation:
Department of Electrical and Electronic Engineering, Meijo University, 1–501 Shiogamaguchi, Tempaku-ku, Nagoya 468, Japan
S. Kimura
Affiliation:
Sumitomo Seika Chemicals Co Ltd, J5–33, 4-Chome Kitahama, Chuo-ku, Osaka 541–0041, Japan
Get access

Abstract

We report on deliberate O doping of GaN epitaxial layers during MOCVD growth, using H2O and CO2 as precursors. The photoluminescence spectra show a dominant 3.27 eV emission at 2 K known to be a donor-acceptor pair (DAP) transition. In our samples the intensity of this DAP spectrum correlates with the commonly observed 3.466 eV acceptor bound exciton (ABE) peak, suggesting these spectra are related to the same acceptor. The general correlation of these acceptor spectra with O concentration (as established with SIMS data) suggest that the acceptor is O-related, most likely a VGa-O complex. The concentration was measured with positron annihilation spectroscopy and found to be in the 1016 cm−3 -1017 cm−3 range in different samples. Considering previous results the identity of this residual acceptor is suggested to be a VGa-O-H complex. Previous suggestions that this acceptor is related to Mg, Si or C are discussed and found to be less likely.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dingle, R. and Ilegems, M., Solid State Commun. 8, 1227 (1971).Google Scholar
2. Lagerstedt, O. and Monemar, B., J. Appl. Phys. 45, 2266 (1974).Google Scholar
3. Ilegems, M., Dingle, R., and Logan, R. A., J. Appl. Phys. 43, 3797 (1972).Google Scholar
4. Ilegems, M. and Dingle, R., J. Appl. Phys. 44, 4234 (1973).Google Scholar
5. Reshchikov, M. A., Yi, G.-C., and Wessels, B. W., Phys. Rev. B 59, 13176 (1999).Google Scholar
6. Leroux, M., Grandjean, N., Beaumont, B., Nataf, G., Semond, F., Massies, J., and Gibart, P., J. Appl. Phys. 86, 3721 (1999).Google Scholar
7. Grimmeiss, H. G. and Monemar, B., J. Appl. Phys. 41, 4054 (1970).Google Scholar
8. Fischer, S., Wetzel, C., Haller, E. E., and Meyer, B. K., Appl. Phys. Lett. 67, 1298 (1995).Google Scholar
9. Glaser, E. R., Freitas, J. A. Jr, Shanabrook, B. V., Koleske, D. D., Lee, S. K., Park, S. S., and Han, J. Y., Phys. Rev. B 68, 195201 (2003).Google Scholar
10. Amano, H., Sawaki, N., Akasaki, I. and Toyoda, Y., Appl. Phys. Lett. 48, 353 (1986).Google Scholar
11. Saarinen, K., Hautojärvi, P., and Corbel, C., in Identification of Defects in Semiconductors, edited by Stavola, M. (Academic Press, New York, 1998), p. 209.Google Scholar
12. Monemar, B., J. Phys: Condens. Matter 13, 7011 (2001).Google Scholar
13. Stepniewski, R., Wysmolek, A., Potemski, M., Pakula, K., Baranowski, J. M., Grzegory, I., Porowski, S., Martinez, G., and Wyder, P., Phys. Rev. Lett. 91, 226404 (2003).Google Scholar
14. Reshchikov, M. A. and Korotkov, R. Y., Phys. Rev. B 64, 115205 (2001)Google Scholar
15. Saarinen, K., Seppälä, P., Oila, J., Hautojärvi, P., Corbel, C., Briot, O., and Aulombard, R. L., Appl. Phys. Lett. 73, 3253 (1998).Google Scholar
16. Oila, J., Kivioja, J., Ranki, V., Saarinen, K., Look, D. C., Molnar, R. J., Park, S. S., Lee, S. K., and Han, J. Y., Appl. Phys. Lett. 82, 3433 (2002).Google Scholar
17. Götz, W., Johnson, N. M., Walker, J., Bour, D. P., and Street, R. A., Appl. Phys. Lett. 68, 667 (1996).Google Scholar
18. Neugebauer, J. and Van de Walle, C. G., Appl. Phys. Lett. 69, 503 (1996).Google Scholar
19. Gelhausen, O., Phillips, M. R., Goldys, E. M., Paskova, T., Monemar, B., Strassburg, M., and Hoffmann, A., Phys. Rev. B 69, 125210 (2004).Google Scholar
20. Monemar, B., Mater. Sci. Eng. B 59, 122 (1999).Google Scholar