Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T12:34:07.307Z Has data issue: false hasContentIssue false

Oxygen Influence on Titanium Silicide Formation

Published online by Cambridge University Press:  22 February 2011

G.G. Bentini
Affiliation:
Istituto La.M.El.-C.N.R., Via Castagnoli 1, 40126 Bologna, Italy,
M. Berti
Affiliation:
Dipartimento di Fisica, Unità G.N.S.M., Via Marzolo 8, 35131 Padova, Italy
C. Cohen
Affiliation:
Groupe de Physique des Solides de 1'E.N.S., Université Paris VII, 2 Place Jussieu, 75221 Paris, France
A.V. Drigo
Affiliation:
Dipartimento di Fisica, Unità G.N.S.M., Via Marzolo 8, 35131 Padova, Italy
S. Guerri
Affiliation:
Istituto La.M.El.-C.N.R., Via Castagnoli 1, 40126 Bologna, Italy,
R. Nipoti
Affiliation:
Istituto La.M.El.-C.N.R., Via Castagnoli 1, 40126 Bologna, Italy,
J. Siejka
Affiliation:
Groupe de Physique des Solides de 1'E.N.S., Université Paris VII, 2 Place Jussieu, 75221 Paris, France
Get access

Abstract

The oxygen behaviour and its influence on the annealing properties of the TiO2/Si and Ti/TiO2/Si systems have been investigated. For the TiO2/Si system no reaction at all could be evidenced after vacuum annealing up to 900°C for 30'. In the Ti/TiO2/Si system metallic Ti reacts with the TiO2 film above 400°C and at 600°C a uniform oxygen solid solution at the solubility limit was obtained without any Si reaction. Silicide formation occurs for annealing temperatures higher than 650°C and causes oxygen expulsion from the reacted layer and consequently a rise in its concentration at the surface where Ti oxide precipitation takes place. This surface oxide layer prevents a further growth of the silicide up to 850°C. The reaction of the whole metal film is attained only by annealing at 900°C or above, when the oxide is completely reduced and an important oxygen loss takes place. A model explaining this behaviour is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Taubenblatt, M.A. and Helms, C.R., J. Appl. Phys. 53, 6308 (1982).Google Scholar
2. Butz, R., Rubloff, G.W. and Ho, P.S., J.Vac. Sci. Technol. A1(2), 771(1983).Google Scholar
3. d'Heurle, F., Irene, E.A. and Ting, C.Y., Appl. Phys. Lett. 42, 361 (1983).Google Scholar
4. Bentini, G.G., Servidori, M., Cohen, C., Nipoti, R. and Drigo, A.V., J. Appl. Phys. 53, 1525 (1982).CrossRefGoogle Scholar
5. Bentini, G.G., Nipoti, R., Berti, M., Drigo, A.V. and Cohen, C., Mat. Res. Soc. Symposium, Proc. 4, 443 (1982).CrossRefGoogle Scholar
6. Maydell-Ondrusz, E.A., Hemment, P.L.F., Stephens, K.G. and Moffat, S., Electronics Letters 18, 752 (1982).Google Scholar
7. Berti, M., Drigo, A.V., Cohen, C., Siejka, J., Bentini, G.G., Nipoti, R. and Guerri, S., to be published in J. Appl.Phys.Google Scholar
8. Maissel, L.J. and Lang, R.G., “Handbook of Thin Film Technology”(Mc Graw-Hill, London 1970) pp. 172.Google Scholar