Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-20T12:22:27.451Z Has data issue: false hasContentIssue false

Oxygen Doping of GaAs During Omvpe Controlled Introduction of Impurity Complexes

Published online by Cambridge University Press:  22 February 2011

Y. Park
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh PA 15213
M. Skowronski
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh PA 15213
T.S. Rosseel
Affiliation:
Oak Ridge National Laboratory, Oak Ridge TN 37831
M.O. Manasreh
Affiliation:
Wright Laboratory, WL/ELRA, WPAFB OH 45433
Get access

Abstract

GaAs epilayers have been grown by Organo-Metallic Vapor Phase Epitaxy using dimethylaluminum methoxide as a dopant source. This compound contains a strong aluminumoxygen bond which is thought to remain intact during low temperature deposition and result in the incorporation of Al-O as a complex. Incorporation of aluminum and oxygen was investigated by Secondary Ion Mass Spectroscopy as a function of growth conditions: growth temperature, growth rate, V/III ratio, reactor pressure and dopant mole fraction. High doping levels up to 1020 cm−3 (for both oxygen and aluminum) were achieved without degradation of surface morphology andlor precipitation of a second phase. Oxygen concentration is lower than that of aluminum for all investigated growth conditions but at low deposition temperatures oxygen/aluminum ratios approach 1, indicating that Al-O is incorporated as a pair. Infrared absorption measurements in the 600-1200 cm−1 range did not detect well known isolated oxygen localized vibrational modes (LVM). Also in layers grown at low temperatures the intensity of isolated aluminum LVM at 362 cm−1 is much smaller than the concentration obtained by SIMS. Both observations prove that oxygen not only is incorporated as an Al-O pair but remains bonded in the bulk of the layer. Low temperature photoluminescence measurements indicate that the A1-O complex is electrically active in GaAs, forms a deep level within the GaAs band gap, and serves as an efficient non-radiative recombination center. Near band edge luminescence intensity correlates well incorporation of oxygen. The Al-O pairs act as deep acceptors in GaAs and cause the compensation of shallow tellurium donors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Abernathy, C.R., Jordan, A.S., Pearton, S.J., Hobson, W.S., Bohling, D.A. and Muhr, G.T., Appl. Phys. Lett., 56, 2654 (1990).CrossRefGoogle Scholar
2 Hata, M., Takata, H., Yako, T., Furuhara, N., Maeda, T. and Uemura, Y., J. Crystal Growth, 124, 427 (1992).Google Scholar
3 Kuech, T.F., Potemski, R., Cardone, F. and Scilla, G., J. Electron. Mater., 21, 341 (1992).Google Scholar
4 Foxon, C.T., Clegg, J.B., Woodbridge, K., Hilton, D., P. Dawson and Blood, P., J. Vac. Sci. Technol. B, 3, 703 (1985).Google Scholar
5 Akimoto, K., Kamada, M., Taira, K., Arai, M. and Watanabe, N., J. Appl. Phys., 59, 2833 (1986).CrossRefGoogle Scholar
6 Kisker, D.W., Miller, J.N. and Stringfellow, G.B., Appl. Phys. Lett., 40, 614 (1982).Google Scholar
7 Shealy, J.R., Kreismanis, V.G., Wagner, D.K. and Woodall, J.M., Appl. Phys. Lett., 42, 83 (1983).Google Scholar
8 Kim, B., Tserng, H.Q. and Lee, J.W., IEEE Electron Devices Lett., EDL–7, 638 (1986).Google Scholar
9 Casey, H.C., Cho, A.Y., Lang, D.V., Nicollian, E.H. and Foy, P.W., J. Appl. Phys., 50, 3484 (1979).Google Scholar
10 Casey, H.C., McCalmont, J.S., Pandharpurkar, H., Wang, T.Y. and Stringfellow, G.B., Appl. Phys. Lett., 54, 650 (1989).CrossRefGoogle Scholar
11 Ruby, D.S., Arai, K. and Stillman, G.E., J. Appl. Phys., 58, 825 (1985).Google Scholar
12 Lee, B., Arai, K., Skromme, B.J., Bose, S.S., Roth, T.J., Aguilar, J.A., Lepkowski, T.R., Tien, N.C. and Stillman, G.E., J. Appl. Phys., 66, 3772 (1989).Google Scholar
13 Goorsky, M.S., Kuech, T.F., Cardone, F., Mooney, P.M., Scilla, G.J. and Potemski, R.M., Appl. Phys. Lett., 58, 1979 (1991).CrossRefGoogle Scholar
14 Goorsky, M.S., Kuech, T.F., Mooney, P.M., Cardonne, F. and Potemski, R.M., Mat. Res. Soc. Symp., 204, 177 (1991).CrossRefGoogle Scholar
15 Tarao, R., Bull. Chem. Soc. Japan, 39, 725 (1966).Google Scholar
16 Drew, D.A., Haaland, A. and Weidlein, J., Z. anorg. allg. Chem., 398, 241 (1973).Google Scholar
17 Park, Y., Skowronski, M. and Rosseel, T.M., Proc. Mat. Res. Symp., 282, 75 (1993).Google Scholar
18 Schneider, J., Dischler, B., Seelewind, H., Mooney, P.M., Lagowski, J., Matsui, M., Beard, D.R. and Newman, R.C., Appl. Phys. Lett., 54, 1442 (1989).Google Scholar
19 Alt, H.C., Appl. Phys. Lett., 55, 2736 (1989).Google Scholar
20 Alt, H.C., Appl. Phys. Lett., 54, 1445 (1989).CrossRefGoogle Scholar
21 Lorimor, O.G., Spitzer, W.G. and Waldner, M., J. Appl. Phys., 37, 2509 (1966).CrossRefGoogle Scholar
22 Park, Y., Skowronski, M. and Rosseel, T.S., J. Cryst. Growth, (1993).Google Scholar
23 Warren, A.C., Katzenellenbogen, N., Grischkowsky, D., Woodall, J.M., Melloch, M.R. and Otsuka, N., Appl. Phys. Lett., 58, 1512 (1991).CrossRefGoogle Scholar
24 Bhattacharya, P.K., Subramanian, S. and Ludowise, M.J., J. Appl. Phys., 55, 3664 (1984).Google Scholar
25 Skowronski, M., Neild, S.T. and Kremer, R.E., Appl. Phys. Lett., 57, 902 (1990).CrossRefGoogle Scholar
26 Alt, H.C., Phys. Rev. Lett., 65, 3421 (1990).Google Scholar
27 Wallis, R.H., Forte-Poisson, M.A.D., Bonnet, M., Beuchet, G. and Duchemin, J.P., Inst. Phys. Conf. Ser., 56, 73 (1981).Google Scholar