Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T22:37:09.384Z Has data issue: false hasContentIssue false

Oxidation Protection of Multiphase Mo-Containing γ-TiAl-Based Alloys under Cyclic Test Conditions

Published online by Cambridge University Press:  16 February 2015

A. Donchev*
Affiliation:
DECHEMA‐Forschungsinstitut, Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main, Germany
R. Pflumm
Affiliation:
DECHEMA‐Forschungsinstitut, Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main, Germany
M. Galetz
Affiliation:
DECHEMA‐Forschungsinstitut, Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main, Germany
S. Mayer
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef Str. 18, A-8700 Leoben, Austria
H. Clemens
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef Str. 18, A-8700 Leoben, Austria
M. Schütze
Affiliation:
DECHEMA‐Forschungsinstitut, Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main, Germany
*
*donchev@dechema.de, +49697564386
Get access

Abstract

Intermetallic titanium aluminides solidifying via the disordered β-phase are of great interest for several high-temperature applications in automotive and aircraft industries. In this paper the thermocyclic oxidation behavior of three β-solidifying γ-TiAl-based alloys at 800°C and 900°C in air, with and without fluorine treatment, is reported for the first time. The behavior of the well-known TNM alloy (Ti-43.5Al-4Nb-1Mo-0.1B, in at.%) is compared with that of two Nb-free model alloys which contain different amounts of Mo (Ti-44Al-3Mo and Ti-44Al-7Mo, in at.%). During thermocyclic high-temperature exposure in air a mixed oxide scale develops on all three untreated alloys. Small additions of fluorine in the subsurface region of the alloys change the oxidation mechanism from mixed oxide scale formation to alumina at both temperatures. The oxidation resistance of the fluorine treated samples was significantly improved compared to the untreated samples.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Clemens, H., Mayer, S., Adv. Eng. Mat., 15 (2013) 191215.CrossRefGoogle Scholar
Tetsui, T., Shindo, K., Kobayashi, S., Takeyama, M., Scripta Mat., 47 (2002) 399405.CrossRefGoogle Scholar
Pflumm, R., Donchev, A., Mayer, S., Clemens, H., Schütze, M., Intermetallics, 53 (2013) 4555.CrossRefGoogle Scholar
Donchev, A., Gleeson, B., Schütze, M., Intermetallics, 11 (2003) 387398.CrossRefGoogle Scholar
Donchev, A., Pflumm, R., Mayer, S., Clemens, H., Schütze, M., Mat. Res. Soc. Proc. 1516 (2012) 95100.Google Scholar
Donchev, A., Schütze, M., Mat. Sci. Forum, 638-642 (2010) 12941299.CrossRefGoogle Scholar
Stroosnijder, M.F., Zheng, N., Quadakkers, W.J., Hofman, R., Gil, A., Lanza, F., Oxid Met, 46 (1996) 1935.CrossRefGoogle Scholar
Shida, Y., Anada, H., Ox. Met., 45 (1996) 197219.CrossRefGoogle Scholar
Donchev, A., Kolitsch, A., Möller, W., Schütze, M., Yankov, R., in Structural Aluminides for Elevated Temperatures, ed. Kim, Y.-W., Morris, D., Yang, R., Leyens, C. TMS Warrendale 2012 pp. 323332.Google Scholar
Dettenwanger, F., Schumann, E., Rakowski, J., Rühle, M., Meier, G.H., Mat. Res. Soc. Proc., 364 (1995) 981986.CrossRefGoogle Scholar
Dettenwanger, F., Schumann, E., Rakowski, J., Meier, G.H., Mat. Sci. Forum, 251-254 (1997) 211217.CrossRefGoogle Scholar
Masset, P.J., Laurent, M., Schütze, M., Defect Dif. Forum, 289-292 (2009) 397404.CrossRefGoogle Scholar
Galetz, M.C., Rammer, B., Schütze, M., Oxid Met, 81 1-2 (2014), 151165 CrossRefGoogle Scholar