Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-17T18:35:15.033Z Has data issue: false hasContentIssue false

Oxidation of Silicon and Nitridaticn of SiO2 by Rapid Thermal Processes

Published online by Cambridge University Press:  28 February 2011

N. Chan Tung
Affiliation:
Centre National d'Etudes des Télécommunications, Meylan, France
Y. Caratini
Affiliation:
Atelier Electro Thermie, Zirst, Meylan,France
J.L. Buevoz
Affiliation:
Centre National d'Etudes des Télécommunications, Meylan, France
Get access

Abstract

Thin gate oxides of 30 to 150 Å have been grown in a rapid thermal annealing machine. Experiments were performed in the temperature range of 1000 to 1250°C for an oxidation time of 5 to 60 s. The fairly extensive kinetics data show that linear growth occurs with an activation energy Ea of 1.4 eV for the 5-60 s period. The oxide homogeneity was evaluated and gave a value of 1.9 A for a mean oxide thickness of 102 A. The electrical characteristics of Al-gate capacitors were assessed by C-V and I-V measurements. Rapid thermal nitridation of a 96 A SiO2 has been performed at a temperature of 1150°C for a nitridaticn time up to 150 s. An average breakdown field of 14.6 MV/cm has been obtained for MIS capacitors. High resolution TEM show a good interface SioXNY-Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dennard, R.H., Gaensslen, F.H., Yu, H.N., Ridecut, V.L., Bassous, E. and Le Blanc, A.R., IEEE J. Solid-State Circuits 9, 256 (1974).Google Scholar
2. Wong, S.S., Sodini, C.G., Ekstedt, T.W., Grinolds, H.R., Jackson, K.H. and Kwan, S.H., J. Electrochem. Soc. 130, 1139 (183).Google Scholar
3. Terry, F.L., Aucoin, R.J., Naiman, M.L. and Senturia, S.D., IEEE Electron. Device Lett. EDL-4, 191 (1983)Google Scholar
4. Ito, T., Nakamura, T. and Ishikawa, H., IEEE Trans. Electron Devices ED-29, 498 (1982).Google Scholar
5. Habrakev, F.H.P.M., Kuiper, A.E.T., Tamminga, Y. and Theeten, J.B., J. Appl. Phys. 53, 6996 (1982).Google Scholar
6. Chman Tung, N., J. Electrochem. Soc. 132, 914 (1985)Google Scholar
7. Chan Tung, N., Vu, D.P. and Le Pen, C., in Energy Beam-Solid Interactions and Transient Processing, edited by Nguyen, V.T. and Cullis, A.G. (Europ. Mat. Res. Soc. Proc. 4, Strasbourg, France 1985) pp. 255 261.Google Scholar
8. Chan Tung, N., Caratini, Y. and Liauzu, L., in Dielectric Layers in Semiconductors : Novel Technologies and Devices, edited by Bentini, G.G., Fogarassy, E. and Golanski, A. (Europ. Mat. Res. Proc. 12, Strasbourg, France 1986) pp. 247 253.Google Scholar
9. Deal, B. and Grove, A., J. Appl. Phys. 36, 3770 (1965).Google Scholar
10. Massoud, H., Plummer, J. and Irene, E., J. Electrochein. Soc. 132, 1745 (1985).Google Scholar