Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-25T14:13:19.482Z Has data issue: false hasContentIssue false

Osteoblast Adhesion on Biodegradable Polymer Substrates

Published online by Cambridge University Press:  15 February 2011

Susan L. Ishaug
Affiliation:
Institute of Biosciences and Bioengineering, Rice University, Houston, TX
Michael J. Yaszemski
Affiliation:
Departement of Orthopaedic Surgery, Wilford Hall Medical Center, Lackland AFB, TX
Rena Bizios
Affiliation:
Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY
Antonios G. Mikos
Affiliation:
Institute of Biosciences and Bioengineering, Rice University, Houston, TX
Get access

Abstract

We have investigated the adhesion of rat osteoblasts on biodegradable poly(α-hydroxy ester) films as an in vitro model of bone regeneration. Osteoblasts cultured on poly(L-lactic acid), poly(DL-lactic-co-glycolic acid) copolymers, and poly(glycolic acid) films for 14 days grew with rates comparable to those observed for tissue culture polystyrene and retained their phenotype as expressed by activity of alkaline phosphatase and collagen synthesis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Langer, R. and Vacanti, J.P., Science, 260, 920 (1993).Google Scholar
2. Bajpai, P.K., in Biomaterials in Reconstructive Surgery, edited by Rubin, L.R. (C. V. Mosby Co., St. Louis, 1983), p. 312.Google Scholar
3. Freed, L.E., Marquis, J.C., Nohria, A., Emmanual, J., Mikos, A.G., and Langer, R., J. Biomed. Mater. Res., 27, 11 (1993).Google Scholar
4. Toutas, C.P., Bergman, R.A., Lewis, T.W., Stone, H.E., Pyrek, J.D., and Mendenhall, H.V., J. Appl. Biomater., 4, 261 (1993).Google Scholar
5. Atala, A., Vacanti, J.P., Peters, C.A., Mandell, J., Retik, A.B., and Freeman, M.R., J. Urol., 148, 658 (1992).Google Scholar
6. Organ, G.M., Mooney, D.J., Hansen, L.K., Schloo, B., and Vacanti, J.P., Transplantation Proceed., 24, 3009 (1992).Google Scholar
7. Itakura, Y., Kosugi, A., Sudo, H., and Yamamoto, S., J. Biomed. Mater. Res., 22, 613 (1988).Google Scholar
8. Malik, M.A., Puleo, D.A., Bizios, R., and Doremus, R.H., Biomaterials, 13, 123 (1992).Google Scholar
9. Puleo, D.A., Holleran, L.A., Doremus, R.H., and Bizios, R., J. Biomed. Mater. Res., 25, 711 (1991).Google Scholar
10. Sautier, J.M., Nefussi, J.R., and Forest, N., Biomaterials, 13, 400 (1991).Google Scholar
11. Bellows, C.G., Aubin, J.E., Heersche, J.N.M., and Antosz, M.E., Calcif. Tissue Intern., 38, 143 (1986).Google Scholar
12. Ecarot-Charrier, B., Glorieux, F.H., Rest, M. van der, and Pereira, G., J. Cell Biol., 96, 639 (1983).Google Scholar
13. Nefussi, J.R., Boy-Lefevre, M.L., Boulekbache, A., and Forest, N., Differentiation, 29, 160 (1985).Google Scholar
14. Casser-Bette, M., Murray, A.B., Closs, E.I., Erfle, V., and Schmidt, J., Calcif. Tissue Intern., 46, 46 (1990).Google Scholar
15. Elgendy, H.M., Norman, M.E., Keaton, A.R., and Laurencin, C.T., Biomaterials, 14, 263 (1993).Google Scholar
16. Vacanti, C.A., Kim, W., Upton, J., Vacanti, M.P., Mooney, D., Schloo, B., and Vacanti, J.P., Transplantation Proceed., 25, 1019 (1993).Google Scholar
17. Ishaug, S.L., Yaszemski, M.J., Bizios, R., and Mikos, A.G., (in preparation).Google Scholar
18. Pistner, H., Bendix, D.R., Muehling, J., and Reuther, J.F., Biomaterials, 14, 291 (1993).Google Scholar
19. Reed, A.M. and Gilding, D.K., Polymer, 22, 342 (1981).Google Scholar