Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T00:10:16.662Z Has data issue: false hasContentIssue false

Origin and Elimination of Scattering Losses in Fluoride Glasses and Fiber

Published online by Cambridge University Press:  21 February 2011

J. S. Sanghera
Affiliation:
University of Virginia, Charlottesville, Virginia
I. Aggarwal
Affiliation:
Naval Research Laboratory, Washington, DC 20375
B. Harbisp
Affiliation:
Naval Research Laboratory, Washington, DC 20375
L. Busse
Affiliation:
Naval Research Laboratory, Washington, DC 20375
P. Pureza
Affiliation:
Naval Research Laboratory, Washington, DC 20375
P. Hart
Affiliation:
Sachs/Freeman Assocs., Inc., Landover, MD 20875
M. G. Sachon
Affiliation:
Sachs/Freeman Assocs., Inc., Landover, MD 20875
L. Sills
Affiliation:
Geo-Centers, Inc., Fort Washington, MD 20744
R. Miklos
Affiliation:
Sachs/Freeman Assocs., Inc., Landover, MD 20875
Get access

Abstract

The sources of scattering losses in fluorozirconate glasses and fibers are reviewed. Results are presented which show that the predominant mechanism responsible for the presence of fluoride crystals is heterogeneous nucleation. The nature and origin of the different nuclei are discussed and possible ways to eliminate them from the glasses assessed. It is proposed that extreme care be employed in the processing of the glasses with particular emphasis on the preform fabrication step as this is critical to the design of ultra-low loss fibers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Poulain, M., Poulain, M. and Lucas, J., Mat. Res. Bull. 10 (1975) 243 CrossRefGoogle Scholar
2. Tran, D. C., Sigel, G. H. Jr, and Bendow, B., J. Lightwave Tech. LT-2, No.5 (1984) 566 Google Scholar
3. Drexhage, M. G., in Treatise on Materials Science and Technology, Vol.26, Glass IV, eds. Tomozawa, M. and Doremus, R. H. (Academic Press Inc., New York, 1985) p.151 Google Scholar
4. Shibata, S., Horiguchi, M., Jinguji, K., Mitachi, S., Kanamori, T. and Manabe, T., Electron. Lett 17 (1981) 775 Google Scholar
5. Kanamori, T. and Sakaguchi, S., Jap. J. Appl. Phys. 25 (1986) L468 Google Scholar
6. Aggarwal, I., Lu, G. and Busse, L., Mat. Sci. Forum 32–33 (1989) 495 Google Scholar
7. Mie, G., Ann. Physik 25 (1908) 377 Google Scholar
8. Hattori, H., Sakaguchi, S., Kanamori, T. and Terunuma, Y., Appl. Optics Vol.26, No.13 (1987) 2683 Google Scholar
9. Sakaguchi, S. and Takahashi, S., J. Lightwave Tech. LT-5, No.9 (1987) 1219 Google Scholar
10. Moore, M. W., France, P. W., Carter, S. F. and Williams, J. R., Mat.Sci. Forum 32–33 (1988) 457 Google Scholar
11. Sanghera, J. S., Hart, P., Sachon, M. G., Ewing, K. J. and Aggarwal, I., Proc. of the 6th Int. Symp. on Halide Glasses, Clausthal-Zellerfeld, W. Germany, Oct. 1989 Google Scholar
12. Drehman, A. J., Mat. Sci. Forum 19–20 (1987) 483 Google Scholar
13. Hart, P., Lu, G. and Aggarwal, I., Mat. Sci. Forum 32–33 (1988) 179 Google Scholar
14. Lu, G. and Bradley, J. P., J. Am. Ceram. Soc. 69 (1986) 585 Google Scholar
15. Parker, J., Seddon, D. and Clare, A., Phy. Cem. Glasses 28 (1987) 4 Google Scholar
16. Lu, G., Fisher, C. and Bradley, J. P., J. Non-Cryst. Solids 94 (1987) 45 Google Scholar
17. Kanamori, T. and Sakaguchi, S., Jap. J. Appl. Phys. 6 (1987) L468 Google Scholar
18. Sanghera, J. S., Hart, P., Busse, L., Sachon, M. G., Aggarwal, I., to be publishedGoogle Scholar
19. Robinson, M., J. Cryst. Growth 75 (1986) 184 Google Scholar
20. Broer, M. M. and Atkins, R. M., J. Mat. Res. 3, No.4 (1988) 755 CrossRefGoogle Scholar