Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-16T05:38:56.964Z Has data issue: false hasContentIssue false

Oriented Luminescent Nanostructures From Single Molecules Of Conjugated Polymers

Published online by Cambridge University Press:  15 February 2011

Adosh Mehta
Affiliation:
Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37830
Pradeep Kumar
Affiliation:
Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600
Jie Zheng
Affiliation:
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta GA 30332-0400
Robert M. Dickson
Affiliation:
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta GA 30332-0400
Bobby Sumpter
Affiliation:
Computer Sciences and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge TN 37830
Michael D. Barnes
Affiliation:
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37830-6142
Get access

Abstract

Dipole emission pattern imaging experiments on single chains of common conjugated polymers (solubilized poly phenylene vinylenes) isolated by ink-jet printing techniques have revealed surprising uniformity in transition moment orientation perpendicular to the support substrate. In addition to uniform orientation, these species show a number of striking differences in photochemical stability, polarization anisotropy,[1] and spectral signatures[2] with respect to similar (well-studied) molecules dispersed in dilute thin-films. Combined with molecular mechanics simulation, these results point to a structural picture of a folded macromolecule as a highly ordered cylindrical nanostructure whose long-axis (approximately collinear with the conjugation axis) is oriented, by an electrostatic interaction, perpendicular to the coverglass substrate. These results suggest a number of important applications in nanoscale photonics and molecular-scale optoelectronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mehta, A., Kumar, P., Dadmun, M., Thundat, T., Zheng, J., Sumpter, B. G., Dickson, R. M., and Barnes, M. D., Nanoletters 3, 603 (2003)Google Scholar
2. Kumar, P., Mehta, A., Thundat, T., Dadmun, M., Peyser, L., Bartko, A., Dickson, R. M., and Barnes, M. D., J. Phys. Chem. B (in press).Google Scholar
3. Shen, Y., and Prasad, G. N., Appl. Phys. B 74, 641 (2002)Google Scholar
4. Moerner, W. E., Dickson, R. M., and Norris, D. J., Mat. Sci. Eng. B 48, 169 (1997)Google Scholar
5. Tour, J. M., Acc. Chem. Res. 33, 791 (2000)Google Scholar
6. Nguyen, T. Q., Wu, J. J., Doan, V., Schwartz, B. J., and Tolbert, S., Science 288, 652 (2000)Google Scholar
7. Friend, R. H., et. al, Nature 397, 121 (1999)Google Scholar
8. Hide, F., Diazgarcia, M. A., Schwartz, B. J., and Heeger, A. J., Acc. Chem Res. 30, 430 (1997)Google Scholar
9. Heeger, A. J., J. Phys. Chem. B 105, 8475 (2001)Google Scholar
10. Hu, D., Yu, J., Bagchi, B., Rossky, P. J., and Barbara, P. F., Nature 405, 1030 (2000)Google Scholar
11. Nguyen, T. Q., Wu, J. J., Doan, V., Schwartz, B. J., and Tolbert, S., Science 288, 652 (2000)Google Scholar
12. Barnes, M. D., Ng, K. C., Fukui, K., Sumpter, B. G., and Noid, D. W., Macromolecules, 32, 7183 (1999)Google Scholar
13. Bartko, A. P., and Dickson, R.M., J.Phys.Chem. B 103, 11237 (1999)Google Scholar
14. Hellen, E. H., and Axelrod, D., J. Opt. Soc. Am. B 4, 337 (1987)Google Scholar
15. Gettinger, C. L., Heeger, A. J., Drake, J. M., and Pine, D. J., J. Chem. Phys. 101, 1673 (1994)Google Scholar
16. Huser, T., Yan, M., and Rothberg, L. J. Proc. Natl. Acad. Sci. USA 97, 11187 (2000)Google Scholar