Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T03:24:23.271Z Has data issue: false hasContentIssue false

Orientation relationship between metallic thin films and quasicrystalline substrates.

Published online by Cambridge University Press:  01 February 2011

V. Fournée
Affiliation:
LSG2M, CNRS-UMR7584, Ecole des Mines, Parc de Saurupt, 54042 Nancy, France.
A. R. Rossa
Affiliation:
Department of Materials Science and engineering, Iowa State University, Ames, Iowa 50011, USA.
T. A. Lograsso
Affiliation:
Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA. Department of Materials Science and engineering, Iowa State University, Ames, Iowa 50011, USA.
P. A. Thiel
Affiliation:
Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA. Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
Get access

Abstract

We present experimental results on the structure of Ag thin films grown on high-symmetry surfaces of both quasicrystals and approximants. For coverages above ten monolayers, Ag form fcc nanocrystals with (111) plane parallel to the surface plane. Depending on the substrate surface symmetry, the Ag nanocrystals exist in one, two or five different orientations, rotated by a multiple of 2π/30. The orientation relationship between crystalline films and substrates appears to be determined by the following principles: high atomic density rows of the adsorbate are aligned along high atomic density rows of the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

[1] Shen, Z., Kramer, M.J., Jenks, C.J., Goldman, A.I., Lograsso, T., Delaney, D., Heinzig, M., Raberg, W., Thiel, P.A., in Phys. Rev. B: Condens. Matter, 1998, p. 9961.Google Scholar
[2] Bolliger, B., Dmitrienko, V.E., Erbudak, M., Luscher, R., Nissen, H.U., Kortan, A.R., Phys. Rev. B: Condens. Matter 63 (2001) 052203/1.Google Scholar
[3] Fournee, V., Ross, A.R., Lograsso, T.A., Evans, J.W., Thiel, P.A., Surf. Science 537 (2003) 5.Google Scholar
[4] Shimoda, M., Sato, T.J., Tsai, A.P., Guo, J.Q., Surf. Sci. 507–510 (2002) 276.Google Scholar
[5] Vrijmoeth, J., van der Vegt, H.A., Meyer, J.A., Vlieg, E., Behm, R.J., Phys. Rev. Lett. 72 (1994) 3843.Google Scholar
[6] Koaczkiewicz, J., Bauer, E., Surf. Science 314 (1994) 221.Google Scholar
[7] Hellwig, O., Theis-Bröhl, K., Wilhelmi, G., Zabel, H., Surf. Science 410 (1998) 362.Google Scholar
[8] Boudard, M., De Boissieu, M., Janot, C., Heger, G., Beeli, C., Nissen, H.U., Vincent, H., Ibberson, R., Audier, M., Dubois, J.M., J. Phys.: Condens. Matter 4 (1992) 10149.Google Scholar
[9] Boudard, M., Klein, H., de Boissieu, M., Audier, M., Philos. Mag. A 74 (1996) 939.Google Scholar