Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-20T11:19:32.129Z Has data issue: false hasContentIssue false

Organic Electrochemical Smart Pixels

Published online by Cambridge University Press:  11 February 2011

Peter Andersson
Affiliation:
Dept. of Science and Technology, Linköping University, Bredgatan 33, SE-601 74 Norrköping, Sweden
David Nilsson
Affiliation:
Dept. of Science and Technology, Linköping University, Bredgatan 33, SE-601 74 Norrköping, Sweden
Per-Olof Svensson
Affiliation:
Dept. of Science and Technology, Linköping University, Bredgatan 33, SE-601 74 Norrköping, Sweden
Miaoxiang Chen
Affiliation:
Dept. of Science and Technology, Linköping University, Bredgatan 33, SE-601 74 Norrköping, Sweden
Anna Malmström
Affiliation:
Dept. of Science and Technology, Linköping University, Bredgatan 33, SE-601 74 Norrköping, Sweden
Tommi Remonen
Affiliation:
ACREO Institute, Bredgatan 34, SE-602 21 Norrköping, Sweden
Thomas Kugler
Affiliation:
ACREO Institute, Bredgatan 34, SE-602 21 Norrköping, Sweden
Magnus Berggren
Affiliation:
Dept. of Science and Technology, Linköping University, Bredgatan 33, SE-601 74 Norrköping, Sweden
Get access

Abstract

An all-printed organic smart pixel is achieved through the combination of an electrochemical transistor and an electrochromic display cell. Smart pixels of this kind are arranged into a cross-point matrix resulting in an active-addressed display. This type of display has been realized on coated fine paper, operates at voltages less than 2 Volts and exhibits good bistability properties. Here we report on the operation characteristics of electrochemical smart pixels in which the ion concentration of the electrolyte has been varied.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Comiskey, B., Albert, J. D., Yoshizawa, H., and Jakobson, J., Nature 394, 253 (1998).Google Scholar
Ditlea, S., Scientific American November, 50 (2001).Google Scholar
3. Huitema, H. E. A., Gelinck, G. H., Putten, J. B. P. H. v. d., Kuijk, K. E., Hart, C. M., Cantatore, E., Herwig, P. T., Breemen, A. J. J. M. v., and Leeuw, D. M. d., Nature 414, 599 (2001).Google Scholar
4. Sirringhaus, H., Tessler, N., and Friend, R. H., Science 280, 1741 (1998).Google Scholar
5. Dodabalapur, A., Bao, Z., Makhija, A., Laquindanum, J. G., Raju, V. R., Feng, Y., Katz, H. E., and Rogers, J., Applied Physics Letters 73, 142 (1998).Google Scholar
6. Nilsson, D., Chen, M., Kugler, T., Remonen, T., Armgarth, M., and Berggren, M., Advanced Materials 14, 51 (2002).Google Scholar
7. Andersson, P., Nilsson, D., Svensson, P.-O., Chen, M., Malmström, A., Remonen, T., Kugler, T., and Berggren, M., Advanced Materials 14, 1460 (2002).Google Scholar
8. Huitema, H. E. A., Gelinck, G. H., Putten, J. B. P. H. v. d., Kuijk, K. E., Hart, K. M., Cantatore, E., and Leeuw, D. M. d., Advanced Materials 14, 1201 (2002).Google Scholar