Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-03T13:13:39.057Z Has data issue: false hasContentIssue false

Ordering In Zn0.5Fe0.5Se Epilayers Grown on InP Substrates by Molecular Beam Epitaxy

Published online by Cambridge University Press:  26 February 2011

L. Salamanca Riba
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, MD 20742–2115
K. Park
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, MD 20742–2115
B. T. Jonker
Affiliation:
Naval Research Laboratory, Washington, DC 20375–5000
Get access

Abstract

We have observed an ordered structure in Zn0.5Fe0.5Se epilayers grown on (001) InP substrates using transmission electron microscopy. The ordered structure of Zn0.5Fe0.5Se has Fe atoms occupying the (0,0,0) and (½, ½, 0) sites and Zn atoms occupying the (0, ½, ½) and (½, 0, ½) sites in the zinc-blende unit cell. Ordering is observed in both electron diffraction patterns and cross-sectional high-resolution lattice images along the < 100 > and < 110 > directions. This ordered structure consists of alternating ZnSe and FeSe monolayers along the < 100 > and < 110 > directions. Computer image simulations of the high-resolution images under various thicknesses, and defocusing conditions have been obtained and are compared with those obtained experimentally.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Furdyna, J. K., J. Vac. Sci. Technol. A 4, 2002 (1986).Google Scholar
[2] Datta, S., Furdyna, J. K., and Gunshor, R. L., Superlattices and Microstructures, 1, 327 (1985).Google Scholar
[3] Sant, S. B., Kleiman, J., Melech, M., Park, R. M., Weatherly, G. C., Smith, R. W., and Rajan, K., in Inst. Phys. Conf. Ser. 87, 129 (1987).Google Scholar
[4] Jonker, B. T., Krebs, J. J., Qadri, S. B., and Prinz, G. A., Appl. Phys. Lett. 50, 848 (1987).Google Scholar
[5] Kuan, T. S., Kuech, T. F., Wang, W. I., and Wilkie, E. L., Phys. Rev. Lett. 54, 201 (1985).Google Scholar
[6] Jen, H. R., Jou, M. J., Cherng, Y. T., and Stringfellow, G. B., J. Cryst. Growth 85, 175 (1987).Google Scholar
[7] Murgatroyd, I. J., Norman, A. G., and Booker, G. R., J. Appl. Phys. 67, 2310 (1990).Google Scholar
[8] Norman, A. G., Mallard, R. E., Murgatroyd, I. J., Booker, G. R., Moore, A. H., and Scott, M. D., in Inst. Phys. Conf. Ser. 87, 77 (1987).Google Scholar
[9] Jen, H. R., Cao, D. S., and Stringfellow, G. B., Appl. Phys. Lett. 54, 1890 (1989).Google Scholar
[10] Jen, H. R., Ma, K. Y., and Stringfellow, G. B., Appl. Phys. Lett. 54, 1154 (1989).Google Scholar
[11] Kuan, T. S., Wang, W. I., and Wilkie, E. L., Appl. Phys. Lett. 51, 51 (1987).Google Scholar
[12] Shahid, M. A., Mahajan, S., Laughlin, D. E., and Cox, H. M., Phys. Rev. Lett. 58, 2567 (1987).Google Scholar
[13] Ueda, O., Takikawa, M., Takechi, M., Komeno, J., and Umebu, I., J. Cryst. Growth 93, 418 (1988).Google Scholar
[14] Salamanca-Young, L., Partin, D. L., and Heremans, J., J. Appl. Phys. 63, 1504 (1988).Google Scholar
[15] Cowley, J. M., and Moodie, A. F., Acta Cryst. 10, 609 (1957); J. M. Cowley, and A. F. Moodie, Acta Cryst. 12, 353 (1959); J. M. Cowley, and A. F. Moodie, Acta Cryst. 12, 360 (1959).Google Scholar
[16] Swagten, H. J. M., Twardowski, A., Jonge, W. J. M. de, and Demianiuk, M., Phys. Rev. B 39, 2568 (1989).Google Scholar
[17] Srivastava, G. P., Martins, J. L., and Zunger, A., Phys. Rev. B 31, 2561 (1985).Google Scholar
[18] Ourmazd, A., and Bean, J. C., Phys. Rev. Lett. 55, 765 (1985).Google Scholar