Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T15:45:40.359Z Has data issue: false hasContentIssue false

Optically Detected Magnetic Resonance of Copper Doped Gallium Phosphide

Published online by Cambridge University Press:  28 February 2011

Haflidi P. Gislason
Affiliation:
Sherman Fairchild Laboratory, Department of Physics Lehigh University, Bethlehem, PA 18015
George D. Watkins
Affiliation:
Sherman Fairchild Laboratory, Department of Physics Lehigh University, Bethlehem, PA 18015
Get access

Abstract

A deep photoluminescence (PL) band peaking at 1.08 eV in Cu-doped GaP has been studied by means of optically detected magnetic resonance (ODMR). We report an intense S=l ODMR spectrum arising from this PL band. The signal is strongly anisotropic and consistent with a center of triclinic symmetry. Some of the ODMR transitions show a well resolved hyperfine structure in agreement with the nuclear spin I=3/2 of Cu, thus suggesting the presence of Cu in the defect.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hemstreet, L. A., Phys. Rev. B21, 4711 (1980).Google Scholar
2. Hemstreet, L. A., in 13th Int.Yonf. on Defects in Semiconductors, edited by Kimerling, L. C. and Parsey, J. M. Jr, (Metallurgical Society of AIME, Warrendale, PA, 1985).Google Scholar
3. Singh, V. A. and Zunger, A., Phys. Rev. B31, 3729 (1985).CrossRefGoogle Scholar
4. Skolnick, M. S., Dean, P. J., Pitt, A. D., Uihlein, Ch., Krath, H., Deveaud, B. and Foulkes, E. J., J. Phys. C16, 1967 (1983).Google Scholar
5. Gislason, H. P., Monemar, B. and Wang, Z. G., in 13th Int. Conf. on Defects in Semiconductors, edited by Kimerling, L. C. and Parsey, J. M. Jr, (Metallurgical Society of AIME, Warrendale, PA, 1985) p. 1013.Google Scholar
6. Fagerström, P. O., Grimmeiss, H. G. and Titze, H., J. Appl. Phys. 49, 3341 (1978).CrossRefGoogle Scholar
7. Dean, P. J., J. Luminescence 7, 51 (1973).CrossRefGoogle Scholar
8. Monemar, B., Gislason, H. P., Dean, P. J. and Herbert, D. C., Phys. Rev. B25, 7719 (1982).CrossRefGoogle Scholar
9. Kane, M. J., Dean, P. J., Skolnick, M. S. and Hayes, W., J. Phys. C17, 6127 (1984).Google Scholar
10. Gislason, H. P., Monemar, B., Dean, P. J., Herbert, D. C., Depinna, S., Cavenett, B. C. and Killoran, N., Phys. Rev. B26, 827 (1982).CrossRefGoogle Scholar
11. Lee, K. M., Rev. Sci. Instrum. 53, 702 (1982).CrossRefGoogle Scholar
12. O'Donnell, K. P., Lee, K. M. and Watkins, G. D., Solid State Commun. 44, 1015 (1982).CrossRefGoogle Scholar
13. Kaufmann, U. and Schneider, J., in Festkdrperprobleme (Advances in Solid State Physics), Vol. XX, Treusch, J., ed., (Vieweg, Braunschweig, 1984), p. 87.Google Scholar
14. Davies, J. J., Cox, R. T., and Nicholls, J. E., Phys. Rev. B30, 4516 (1984).CrossRefGoogle Scholar
15. Abragam, A. and Bleaney, B. in Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970), pp. 467471.Google Scholar