Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-19T10:17:32.576Z Has data issue: false hasContentIssue false

Optical Properties of MBE Grown Cubic AlGaN Epilayers and AlGaN/GaN Quantum Well Structures

Published online by Cambridge University Press:  17 March 2011

D.J. As
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Strasse 100 D-33095 Paderborn, Germany, d.as@uni-paderborn.de
T. Frey
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Strasse 100 D-33095 Paderborn, Germany
M. Bartels
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Strasse 100 D-33095 Paderborn, Germany
A. Khartchenko
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Strasse 100 D-33095 Paderborn, Germany
D. Schikora
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Strasse 100 D-33095 Paderborn, Germany
K. Lischka
Affiliation:
Universität Paderborn, FB-6 Physik, Warburger Strasse 100 D-33095 Paderborn, Germany
R. Goldhahn
Affiliation:
TU Ilmenau, Institut für Physik, PF 100565, D-98684 Ilmenau, Germany
S. Shokhovets
Affiliation:
TU Ilmenau, Institut für Physik, PF 100565, D-98684 Ilmenau, Germany
Get access

Abstract

Cubic AlyGa1−yN/GaN heterostructures on GaAs(001) substrates were grown by radio-frequency plasma-assisted molecular beam epitaxy. High resolution X-ray diffraction, spectroscopic ellipsometry and cathodoluminescence were used to characterize the structural and optical properties of the alloy epilayers. X-ray diffraction reciprocal space maps demonstrate the good crystal quality of the cubic AlyGa1−yN films. Both SE as well as room temperature CL of the AlyGa1−yN epilayer show a linear increase of the band gap with increasing Al-content. A pseudomorphically strained cubic 10 × (2.4 nm GaN/ 4.8 nm Al0.12Ga0.88N) multi-quantum well (MQW) structure has been realized. Cathodoluminescence clearly demonstrates strong radiative recombination due to quantized states in the GaN well layer at a photon energy of 3.323 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. As, D.J., Richter, A., Busch, J., Lübbers, M., Mimkes, J., and Lischka, K., Appl. Phys. Lett. 76 (1), 13 (2000)Google Scholar
2. Yang, H., Zheng, L.X., Li, J.B., Wang, X.J., Xu, D.P., Wang, Y. T., Hu, X.W., and Han, P.D., Appl. Phys. Lett. 74 (17), 2498 (1999)Google Scholar
3. Ambacher, O., J. Phys. D: Appl. Phys. 31, 2653 (1998)Google Scholar
4. Majewski, J.A., Zandler, G. and Vogl, P., Semicond. Sci. Technol. 13, A90 (1998)Google Scholar
5. Frey, T., As, D.J., Bartels, M., Pawlis, A., Lischka, K., Tabata, A., Fernandez, J.R.L., Leite, J.R., Haug, C., Brenn, R., to be published in Appl. Phys. Lett. (2000)Google Scholar
6. Sherwin, M.E., Drummond, T.J., J. Appl. Phys. 69, 8423 (1991)Google Scholar
7. Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 27, 118 (1974)Google Scholar
8. Köhler, U., As, D.J., Schöttker, B., Frey, T., Lischka, K., Scheiner, J., Shokhovets, S., and Goldhahn, R., J. Appl. Phys. 85, 404 (1999)Google Scholar
9. Nakadaira, A. and Tanaka, H., Jpn. J. Appl. Phys. 37, 1449 (1998)Google Scholar
10. As, D.J., Richter, A., Busch, J., Schöttker, B., Lübbers, M., Mimkes, J., Schikora, D., Lischka, K., Kriegseis, W., Burkhardt, W., Meyer, B.K., MRS Internet J. Nitride Semicond. Res. 5S1, W3.81 (2000)Google Scholar
11. Koizumi, T., Okumura, H., Balakrishnan, K., Harima, H., Inoue, I., Ishida, Y., Nagatomo, T., Nakashima, S., Yoshida, S., J. Crystal Growth 201/202, 341 (1999)Google Scholar
12. Pugh, S.K., Dugdale, D.J., Brand, S., and Abram, R.A., J. Appl. Phys. 86, 3768 (1999)Google Scholar
13. Wang, C., As, D.J., Schöttker, B., Schikora, D., and Lischka, K., Semicond. Sci. Technol. 14, 161 (1999)Google Scholar
14. Morkoc, H., in “Nitride Semiconductors and Devices”, Springer, Berlin (1999)Google Scholar
15. Majewski, J.A., Zandler, G. and Vogl, P., phys. stat. sol. (a) 179, 285 (2000)Google Scholar
16. Chuang, S.L., in “Physics of Optoelectronic Devices”, Wiley & Sons, New York (1995)Google Scholar
17. As, D.J., submitted to “Optoelectronic Properties of Semiconductors and Superlattices”, series editor Manasreh, M.O., Gordon and Breach Science Publishers (2001)Google Scholar